Smart Meter Interface - Tasmota (2024)

Table of Contents
General description~ Descriptor Syntax~ Meter Definition~ Meter Metrics~ Special Commands~ Commands~ Smart Meter Descriptors~ ABB B23 (MODBus)~ ABB B-Series (like B21, B23) (M-Bus over Infrared port)~ Apator 12EC3~ Apator 12EC3G~ Apator APOX+ (SML)~ Apator Norax 3D (SML)~ Apator Norax 3D+ (SML)~ Apator Picus eHZ.060.D/J (SML)~ Carlo Gavazzi EM340 (MODBus RTU)~ COMBO Meter (Water, Gas, SML)~ DDM18SD (MODBus)~ Digimeto GS303 (SML)~ DZG DWZE12.2.G2 (DVZE) (SML)~ DZG DWS7410.2V.G2 (SML) and DZG DVS7420.2 (SML)~ DZG DWS7412.1.G2 (SML)~ DZG DWS76 (SML)~ DZG DWSB12.2 (SML)~ EasyMeter Q3A / Apator APOX+ (SML)~ EasyMeter Q3B (SML)~ EasyMeter Q3D, Q3DA1024 (OBIS)~ eBZ DD3 (OBIS/SML)~ eBZ MD3 (SML)~ EasyMeter Q1A (SML)~ EasyMeter Q1D (ASCII OBIS)~ EFR SGM-C2/C4/D4 (SML)~ Elster / Honeywell AS1440 (OBIS)~ Elster F96 Plus (Sharky 775) (Ditech Integral-V UltraLite PRO) M-Bus~ Elster / Honeywell AS2020 (SML)~ Elster T510 (OBIS)~ EMH eBZD (SML)~ EMH ED300L (SML)~ EMH ED300S (SML)~ EMH eHZ Generation K (SML)~ EMH eHZM (SML)~ EMH mMe4.0 (SML)~ EMH DIZ-W1EL-00-KM0-0M-200010-E50/K (M-Bus)~ EMH EIZ-GDWL739B (M-Bus)~ EMH LZQJ-XC (OBIS)~ Fronius Symo 10.0-3-M (MODBus TCP)~ Growatt MAX4200 (MODBus)~ Hager EHZ161 / EHZ361 (OBIS)~ Hager EHZ363~ Hiking DDS238-2 ZN/S3 4x (MODBus)~ Holley DTZ541 (SML)~ Holley DTZ541-ZDBA (SML)~ Holley EHZ541-BE (SML)~ Huawei SUN2000-10KTL (MODBus)~ inepro PRO380-Mod (MODBus)~ Iskra MT 174 (OBIS)~ Iskra MT 175 (SML)~ Iskra MT 631 (SML)~ Iskra MT 681 (SML)~ Iskra eHZ-MT681-D4A51-K0p~ Iskra eHZ-MT681-D4A52-K0p~ Itron (SML V1.04)~ Janitza B23 (MODBus)~ JANZ C3801 (MODBus)~ KAIFA MB310H4BDE~ Kamstrup 382Lx7~ Kamstrup Multical 4xx / 6xx / 8xx~ Landis + Gyr E220 (SML)~ Landis + Gyr E320 (SML)~ Landis + Gyr E350 (OBIS)~ Landis + Gyr ZMB120 T213CS (OBIS)~ Landis + Gyr ZMR120AReS2R2sfCS (OBIS)~ 2 * Landis+Gyr E450 (encrypted)~ Landis+Gyr E650 (OBIS)~ Logarex LK11BL (OBIS)~ Logarex LK13BE (OBIS)~ Logarex LK13BE803039~ Logarex LK13BE803319 (OBIS)~ Logarex LK13BE (SML) (LK13BE904639)~ Logarex LK13BE (SML) (e.g. LK13BE6067x9)~ PAFAL 20EC3gr~ Peacefair PZEM004TV30 (MODBus)~ Resol Deltasol BS Plus (VBus)~ Sanxing SX6x1 (SxxU1x) (Ascii OBIS)~ SBC ALE3 (MODBus)~ SBC ALE3 2x (MODBus)~ Schneider iEM3150 (MODBus)~ Schneider iEM3155 (MODBus)~ SDM230 (MODBus)~ SDM530 (MODBus)~ SDM72D (MODBus)~ Sorel LTDC (CANBus)~ Siemens IM-350~ Siemens TD-3511~ Trovis 557x (MODBus)~ WOLF CSZ 11/300 Heater (EBus)~ ZPA GH302 (SML)~ ZPA GH305 (SML)~ inepro Metering PRO380-MB (M-Bus)~ AEConversion solar inverter INVXXX (RAW)~ SMA Solar Inverter (MODBus TCP)~ HUAWEI R4850G2 Lipo Charger (CANBus)~ Kamstrup Multical M401~ Sensus Pollucom F (Wärmemengenzähler, HeatMeter; used with Hichi IR interface)~ Engelmann SensoStar E (Heat meter, used with Hichi IR interface)~

This driver extracts selected values from Smart Meters over various protocols, filters and publishes them to MQTT as regular sensors.

This feature is not included in precompiled binaries

Based on Tasmota's scripting language. To use it you must compile your build. Add the following to user_config_override.h:

#ifndef USE_SCRIPT#define USE_SCRIPT#endif#ifndef USE_SML_M#define USE_SML_M#endif#ifdef USE_RULES#undef USE_RULES#endif

Additional features can be enabled by adding the following #define compiler directive parameters and then compiling the firmware. These parameters are explained further below in the article. Most features are now enabled by default, others may be set in the descriptor per meter.

Feature Description
SML_BSIZ n (default 48) Maximum number of characters per line in serial input buffer. Complete chunk of serial data must fit into this size, so include any CR/LF if that applies. can now be defined per meter in descriptor, see special options
MAX_METERS n (default 5) Maximum number of meters. Decrease this to 1 for example if you have a meter with many lines and lots of characters per descriptor line.
TMSBSIZ n (default 256) Maximum number of characters in serial IRQ buffer (should always be larger than SML_BSIZ and even larger on high baud rates).can now be defined per meter in descriptor, see special options
SML_DUMP_SIZE n (default 128) Maximum number of characters per line in dump mode. Only use if you have long strings comin in and they truncate.
SML_PREFIX_SIZE n (default 8) Maximum number of characters + 1 for SML jsonPrefix.
USE_ESP32_SW_SERIAL enables additional software serial channels for ESP32, (receive only), define pin with '-' sign to assign to software serial
NO_USE_SML_SPECOPT disables special decoder entry to specify direction bit for some SML meters
NO_USE_SML_SCRIPT_CMD disables some special SML script cmds and allows access to sml vars in other parts of the script. Is needed by some of the examples below.
NO_SML_REPLACE_VARS disables replacement of any text in descriptor by script text variables. Useful if several occurrences of a text occupies a lot of space and you get short of script buffer. Readability may get worse so only makes sense on large descriptors. Note: to use % symbol un measurement units, you need to escape it like %%.
NO_USE_SML_DECRYPT disables decoding of encrypted ams meters. decrypting needs TLS, so must define USE_TLS also.
USE_SML_AUTHKEY enables authentication, this is not needed by most energy meters.
NO_USE_SML_TCP disables TCP MODBUS support.
NO_USE_SML_CANBUS disables CANBUS support.

General description~

To use this interface, connect the meter to available GPIO pins. These GPIOs must be set as None in Tasmota. If the interface detects that a script driven meter descriptor GPIO conflicts with a Tasmota GPIO setting, the interface will generate a duplicate GPIO defined error in the log and the meter descriptor will be ignored.

Note

When changing GPIO configurations, especially in conjunction with other Tasmota drivers, a restart may be required.

Note

On an ESP32, due to a different implementation, serial ports may not be used in conjunction with other Tasmota serial devices.

Note

when using bidirectional serial IO (receive and transmit), hardware serial is recommended.

The Smart Meter Interface provides a means to connect many kinds of meters to Tasmota. The following types of meter protocols are supported:

Protocol Description
OBIS ASCII telegrams emitted from many smart meters, including P1 Smart Meters
OBIS Binary SML telegrams emitted from many smart meters
MODBus Binary telegrams used by many power meters and industrial devices (serial and TCP master and slave)
CANBus Binary telegrams used by battery monitoring systems and industrial devices
Kamstrup Binary telegrams used by many power meters from Kamstrup
EBus Binary telegrams emitted by many heaters and heat pumps (e.g. Vaillant, Wolf)
VBus Binary telegrams emitted by many solar thermal systems boilers (e.g. Resol, Viessmann)
RAW Binary decodes all kinds of binary data eg EMS heater bus
Counter interface uses Tasmota counter storage (for e.g. REED contacts either in polling or IRQ mode)

There are many different meters that use the same protocol. There are multitudes of variants and use cases. This interface provides a means of specifying these definitions through meter descriptors. This method uses the scripting language editor to define the descriptors. In this way, only one firmware binary version is required and a modification can be made easily on the fly.

Note

Additional hardware may be required to read certain measuring devices. For example: RS485toTTL adapter for Modbus, IR transistor for electricity meters. Sometimes an additional IR diode and resistors.

By default, a SENSOR telegram is sent to MQTT every 300 seconds. This can be adjusted by changing the TelePeriod.

Descriptor Syntax~

This section must be present, even if it's empty. If compiled with SML_REPLACE_VARS, here is the place where text variables can be defined for the script:

>D

Declare >B (boot) section to inform the interface to read the meter descriptor(s):

>B
=>sensor53 r

(Optional) declare >S section with additional scripting commands:

>S <n>

Declare >M section with the number of connected meters (n = 1..5):

>M <n>

Note

If no >M section is found in the script or if the scripting language is not compiled, the driver reverts to the default hardcoded #define definitions. If no meter script is defined, the default hardcoded descriptor interface (deprecated) uses RX GPIO3 for receiving data and thus may interfere with other Tasmota Definitions without warning.

Note

Software serial only supports 8N1 serial format. Must use hardware serial for e.g. 8E1!

Meter Definition~

+<M>,<rxGPIO>,<type>,<flag>,<parameter>,<jsonPrefix>{,<txGPIO>,<txPeriod>,<cmdTelegram>}

Parameter Description
+<M> Meter number. The number must be increased with each additional Meter (default 1 to 5).
<rxGPIO> The GPIO pin number where meter data is received.
[xxx.xxx.xxx.xxx] IP number instead of pin number enables MODBUS TCP mode, the tcp port number is given at the baudrate position. (tx pin can be any number and is ignored)
<type> The type of meter:
- o - OBIS ASCII type of coding
- s - SML binary smart message coding
- e - EBus binary coding
- v - VBus binary coding
- m - MODBus binary coding with serial mode 8N1
- M - MODBus binary coding with serial mode 8E1
- k - Kamstrup binary coding with serial mode 8N1
- C - CANBus type
- c - Counter type
- r - Raw binary coding (any binary telegram)
<flag> Options flag:
- 0 - counter without pullup
- 1 - counter with pullup
- 16 - enable median filter for that meter. Can help with sporadic dropouts, reading errors (not available for counters). this option is enabled by default #define USE_SML_MEDIAN_FILTER, if you are low on memory and dont use this feature you may outcomment this define in the driver
- 32 - Disable FastExit for binary SML parsing. See #21497 for details
<parameter> Parameters according to meter type:
- for o,s,e,v,m,M,k,r types: serial baud rate e.g. 9600 (or port# for Modbus TCP).
- for type C Canbus Baudrates and Number of receive buffers (*100). (see example R4850G2)
- 0 = 25 KBITS
- 1 = 50 KBITS
- 2 = 100 KBITS
- 3 = 125 KBITS
- 4 = 250 KBITS
- 5 = 500 KBITS
- 6 = 800 KBITS
- 7 = 1 MBITS
- for c type: a positive value = counter poll interval (not really recommended) or a negative value = debounce time (milliseconds) for irq driven counters.
<jsonPrefix> Prefix for Web UI and MQTT JSON payload. Up to 7 characters.
<txGPIO> The GPIO pin number where meter command is transmitted (optional).
<tx enable> The GPIO pin number to enable transmitter (RS485) may follow the TX pin in bracket (pin) without a colon an 'i' in front of the pin number means 'inverted' (optional).
<txPeriod> Period to repeat the transmission of commands to the meter (optional). Number of 100ms increments (n * 100ms).
<cmdTelegram> Comma separated hex coded byte blocks to send to meter device. For MODBus each comma separated block is a command to retrieve a certain register from the meter (optional: only required for measuring devices that have to be triggered with a certain character string).

Note

for other serial protocols you may specify the exact mode (only for hardware serial) by the following code after the type specifier:

N =no parity
E =even parity
O =odd parity
and number of stop-bits

e.g for Modbus: mN1,mN2,mE1,mE2,mO1,mO2

Example

+1,3,o,0,9600,OBIS1,1,2,2F3F210D0A+1,3,o,0,9600,OBIS1,1(i4),2,2F3F210D0A with pin 4 as inverted TX enable+1,3,o,16,115200,NormalTariff,1+1,3,s,16,9600,SML1+1,12,c,1,-10,H20_Cnt+1,3,v,0,9600,Solar

Example

For MODBus: +1,3,m,0,9600,MODBUS,1,1,01040000,01040002,01040004,01040006,01040008,0104000a,0104000c,0104000e,01040010
Components of the character string:
...01040000,01040002,...
01 = Modbus slave device ID
04 = Instruction to read an Input Register (alternatively, 03 = Instruction to read a Holding Register)
0000/0002 = Register # (as Hexadecimal codification, without the prefix 0x. Example: 0x0079 -> 0079)
the number of requested registers is fixed to 2, however with the char 'r' before the hex string the complete request string may be specified
...r010400000001,r010400020003,...
Note: ID, Instruction to read the register value (Input vs Holding) and Register# may differ depending on the measuring device.

Meter Metrics~

Each meter typically provides multiple metrics (energy, voltage, power, current etc.) which it measures. An entry for each metric to be collected must be specified. An entry defines how to decode the data and put it into variables.

<M>,<decoder>@<scale><offs>,<label>,<UoM>,<var>,<precision>

Parameter Description
<M> The meter number to which this decoder belongs
<decoder> Decoding specification: OBIS as ASCII; SML, EBus, VBus, MODBus, RAW as HEX ASCII etc. No space characters allowed in this section!
OBIS: ASCII OBIS code terminated with ( character which indicates the start of the meter value
Counter: ASCII code 1-0:1.8.0*255 for counter value, code 1-0:1.7.0*255 for pulse rate (e.g. for actual power value)
SML: SML binary OBIS as hex terminated with 0xFF indicating start of SML encoded value
EBus, MODBus, RAW - hex values of data blocks to compare:
- xx = ignore value (1 byte) or xN = ignore N bytes
- ss = extract a signed byte
- uu = extract an unsigned byte
- UUuu = extract an unsigned word (high order byte first)
- uuUU = extract an unsigned word (low order byte first)
- UUuuUUuu or U32 = extract an unsigned long word (high order byte first)
- uuUUuuUU or u32 = extract an unsigned long word (low order byte first)
- SSss = extract a signed word (high order byte first)
- ssSS = extract a signed word (low order byte first)
- SSssSSss or S32 = extract a signed long word (high order byte first)
- ssSSssSS or s32 = extract a signed long word (low order byte first)
- on long word values, if a trailing s is added at the end of the mask, word order is reversed
- U64 = extract an unsigned 64 long word
- u64 = extract an unsigned 64 long word (low order byte first)
- bcdN = extract a binary coded decimal N=2..12
- ffffffff = extract a float value - IEEE754 decode
- FFffFFff = extract a reverse float value - IEEE754 decode
- kstr = decode KAMSTRUP data
- pm(x.y.z) = pattern match(asci obis code)
- pm(hHHHHHH) = pattern match(hex obis code)
- pm(rHHHHHH) = pattern match(any hex pattern)

if using VBus - hex values of data blocks to compare:
- AAffffaddrff0001ffff = VBus-specific hex header: AA-sync byte, addr-the reversed address of the device. To find his out first look up the known hex address of the device. E.g. Resol DeltaSol BS Plus is 0x4221. Reverse it (without 0x) and you will get 21 42 hex characters. Now turn on raw dump mode using command sensor53 d1 and look for rows starting with aa, containing your reversed address at position 4 and 5 and 00 01 hex characters at position 7 and 8. If found, the entire header will be 10 hex characters long including aa (20 ascii chars without space, e.g. for Resol DeltaSol BS Plus this will be AA100021421000010774). At position 9 you see the number of frames containing readable data. To turn off raw dump use sensor53 d0.
- v = VBus protocol indicator
- oN = extract data from offset N (see offsets of your device in VBus protocol documentation)
- u or s = extract unsigned or signed data
- w or b = extract word or byte
End of decoding: @ indicates termination of the decoding procedure.
- ( following the @ character in case of obis decoder indicates to fetch the 2. value in brackets, not the 1. value. (e.g. to get the second value from an obis like 0-1:24.2.3(210117125004W)(01524.450*m3))
- decoding multiple values coming in brackets after each other is possible with (@(0:1, (@(1:1, (@(2:1 and so on (e.g. to get values from an obis like 0-0:98.1.0(210201000000W)(000000.000*kWh)(000000.000*kWh))
- s delimiter index colon selects an entry of special obis line (Kamstrup heatmeter) separated by delmiter e.g. s 0:
- decoding a 0/1 bit is indicated by a @ character followed by bx: (x = 0..7) extracting the corresponding bit from a byte. (e.g.: 1,xxxx5017xxuu@b0:1,Solarpump,,Solarpump,0)
- in case of MODBus/Kamstrup, ix: designates the index (x = 0..n) referring to the requested block in the transmit section of the meter definition

<scale> scaling factor (divisor) or string definition
This can be a fraction (e.g., 0.1 = result * 10), or a negative value. When decoding a string result (e.g. meter serial number), use # character for this parameter (Note: only one string can be decoded per meter!). For OBIS, you need a ) termination character after the # character.
<offs> optional offset must precede with + or - sign, note: offset is applied before scale!
<label> web UI label (max. 23 characters)
<UoM> unit of measurement (max. 7 characters)
<var> MQTT label (max. 23 characters)
<precision> number of decimal places. Add 16 to transmit the data immediately. Otherwise it is transmitted on TelePeriod only.

Use ; character to comment lines in the script.

Put # character at the end to terminate M section of the script.

Example

(OBIS/SML/MODBus):

1,1-0:1.8.1*255(@1,Total consumption,kWh,Total_in,4` 1,77070100010801ff@1000,W1,kWh,w1,4` 1,010304UUuuxxxxxxxx@i0:1,Spannung L1,V,Voltage_L1,0` 1,0:98.1.0(@(0:1,Havi adat, kWh,havi1,3`1,0:98.1.0(@(1:1,Havi adat, kWh,havi2,3`1,0:98.1.0(@(2:1,Havi adat, kWh,havi3,3`

OBIS: 1,1-0:0.0.0*255(@#),Meter Nr,, Meter_number,0

Counter: 1,1-0:1.8.0*255(@1000,consumption,kWh,Total_in,3) precision of 3, scale for 1000 pulses/kWh
1,1-0:1.7.0*255(@0.01667, power,W,Power_actual,0) actual power from pulse rate (in pulses/min) of counter meter, scale for 1 pulse/Wh (1 pulse/min => 60W; 1/60(=0.01667) (pulses/min)/W)

SML: 1,77078181c78203ff@#,Service ID,,Meter_id,0
1,1-0:1.8.0*255(@1,consumption,kWh,Total_in,4 precision of 4, transmitted only on TelePeriod
1,1-0:1.8.0*255(@1,consumption,kWh,Total_in,20 precision of 4, transmitted immediately (4 + 16 = 20)

MODBus: +1,3,M,1,9600,SBC,1,2,01030023,01030028...
1,010304UUuuxxxxxxxx@i0:1,Voltage L1,V,Voltage_L1,0 the i0:1 refers to: 01030023 with a scaling factor (:1) for 1
1,010304UUuuxxxxxxxx@i1:10,Current L1,V,Current_L1,2 the i1:10 refers to: 01030028 with a scaling factor (:10) for 10

Tip

Use: sensor53 dM to output the received data in the console. M = the number of the meter in the definition line.
During the output of the data in the console, the data in the WEB UI are not updated. To return write: sensor53 d0

Tip

You can monitor the serial activity at a GPIO with a connected LED. This function is useful for debugging purposes and also to see data is coming in during normal operation.
Usage: Enter the command sensor53 lx to activate this function (Lowercase L for LED). x is the number of the GPIO where the LED is connected. For example you can use sensor53 l2 for the onboard LED on a Wemos D1-mini or sensor53 l13 on a Sonoff Basic. sensor53 l255 turns the function off. This is the default value.
With sensor53 mx you can choose which serial meter (x) will be monitored. Set sensor53 m0 will monitor all serial meters. This is the default value.
To start the monitoring at boot-time, simply add the necessary entries in the boot-section (>B) of the script:

Example

>B=>sensor53 r=>sensor53 l13

Special Commands~

With = character at the beginning of a line you can do some special decoding. With * character fields can be hidden or skipped.

Command Description
M,=m Perform arithmetic (+,-,*,/) on the measured data. Use # before a number to designate a constant value
e.g. 1,=m 3+4+5/#3 @100,Voltage L1+L2+L3/3,V,Volt_avg,2 to sum results of decoder entries 3,4,5 and divide by 3 (average)
M,=d Calculate difference between metric values decoded at time intervals (up to 10 =d lines possible)
e.g. 1,=d 3 10 calculate 10 second interval difference of decoder entry 3
M,=h Insert text on the web interface (html text up to 30 chars). These lines do not count as decoder entry.
e.g. 1,=h<hr/> to insert a separator line on the web UI
* character To hide fields from result output or disable output completely. Compiling with USE_SML_SCRIPT_CMD required.
- as single character in <label> of the metrics line will hide that value from the web UI
- as single character in <label> of the meter definition line will suppress the entire JSON output on MQTT
M,=so1 special SML option for meters that use a bit in the status register to sign import or export like ED300L, AS2020 or DTZ541
e.g. 1,=so1,00010800,65,11,65,11,00100700 for DTZ541
1. obis code that holds the direction bit, 2. Flag identifier, 3. direction bit, 4. second Flag identifier (some meters use 2 different flags), 5. second bit, 6 obis code of value to be inverted on direction bit.
M,=so2 if 1 fixes the bug introduced by meter DWS74, if 2 enabled OBIS line compare mode instead of shift compare mode, if 4 invert hardware serial line.
e.g. 1,=so2,2 enable obis line compare.
M,=so3 sets serial buffer size, serial IRQ buffer size and serial dump buffer size.
enter as a new descriptor line e.g. 1,=so3,512 sets serial buffer size to 512. (default buffer is 48 bytes input, 128 bytes dump)
note: size should fit to the maximum length of a single line of decoding description; too big buffer sizes lead to delayed WebUI/MQTT updates
M,=so4 sets AES decrytion key for encrypted meters.must define exactly 16 hexadecimal chars
e.g. 1,=so4,deabcd0020a0cfdedeabcd0020a0cfde sets decryption key and enables decrypt mode for that meter.
M,=so5 sets AES authentication key for encrypted meters.must define exactly 16 hexadecimal chars
e.g. not needed by most energy meters (needs USE_SML_AUTHKEY).
M,=so6 sync time in milliseconds for serial block detection with AMS meters (defaults to 1000).
M,=so7 on ESP32 force selection of UART Nr. X (0,1,2) allows coexistence with other serial drivers
M,=so8 CAN bus filter mask
M,=so9 CAB bus filter

Example

To get the value of one of the descriptor lines, use sml[X]. X = Line number. Starts with 1. (compiling with USE_SML_SCRIPT_CMD required)

>Dv1=0v2=0>S;Writes the value of Descriptorline 1 to v1v1=sml[1] ;Writes the value of Descriptorline 2 to v2v2=sml[2]

Example

To disable and enable publishing of MQTT data on TelePeriod, use smlj=0 and smlj|=1, respectively. For example to skip first MQTT publishing after boot (may contain erroneous data at after restart if meter is slow, see Sanxing SX6x1):

>B;disable publishing at MQTT teleperiod, on bootsmlj=0>S;re-enable publishing at MQTT teleperiod, after 10 seconds of uptimeif upsecs>10thensmlj|=1endif

the variable smlj also switches to obis_line_mode if bit 1 = 1, default is 0

Example

If you have large meter descriptors and want to extract multiple values from the same descriptor, you can save flash space using SML_REPLACE_VARS at compile time (see Resol Deltasol BS Plus):

>D;define a text variabler="1,AA100021421000010774">M 1;in your meter definitions you can use your variable for the same descriptor+1,3,v,0,9600,Solar%r%vo12ut@#,time,,zeit,1%r%vo0uw@10,S1 COL,°C,sens1,1%r%vo2uw@10,S2 TST1,°C,sens2,1%r%vo4uw@10,S3 TST2,°C,sens3,1%r%vo6uw@10,S4 TR,°C,sens4,1;%r% inserts the text variable and saves script storage space (3 instead of 22 chars for each line)

Attention

With a few meters, it is necessary to request the meter to send data using a specific character string. This string has to be sent at a very low baud rate (300Baud). If you reply the meter with an acknowledge and ask the it for a new baud rate of 9600 baud, the baud rate of the SML driver has to be changed, too (see Landis + Gyr ZMR120AR).

To change the baud rate:

sml(METERNUMBER 0 BAUDRATE)

For sending a specific character string:

sml(METERNUMBER 1 STRING)

And it works like this:

>Dres=0 scnt=0 ;For this Example in the >F section >F;count 100ms scnt+=1 switch scnt case 6 ;set sml driver to 300 baud and send /?! as HEX to trigger the Meter res=sml(1 0 300) res=sml(1 1 "2F3F210D0A") ;1800ms later \> Send ACK and ask for switching to 9600 baud case 18 res=sml(1 1 "063035300D0A") ;2000ms later \> Switching sml driver to 9600 baud case 20 res=sml(1 0 9600) ;Restart sequence after 50x100ms case 50 ; 5000ms later \> restart sequence scnt=0 ends >M 1+1,3,o,0,9600, ,1 ;...etc. 

Note: This procedure is only necessary, if the meter explicitly asks for 300 baud. The most meters work directly with 9600 baud. Therefore it is easier to give this method a try (see Iskra MT 174):

Meter#,GPIO# Input,TYPE,FLAG,Baudrate,JSONNAME,GPIO# Output,TX Period,Character string
+1,3,o,0,9600,energy,1,4,2F3F210D0A

Tip

If you use a Wemos D1 Mini you could compile a 4M flash image with filesystem support so your script will survive upgrades and factory resets. To do this, create a new entry in platformio_tasmota_env.ini:

[env:tasmota-4mb]board_build.ldscript = eagle.flash.4m2m.ld

Add tasmota-4mb to platformio.ini's build variants.

Add the following to user_config_override.h:

#undef MODULE#define MODULE WEMOS#define USE_UFILESYS#define GUI_TRASH_FILE

Also recommended, if you use lots of vars and increased buffer sizes to free up the image from unused drivers. You should get some inspiration from the tasmota-lite image definition in tasmota_configurations.h.

Tip

You can dump to your PC the raw data coming in if you use the module's hardware serial ports (1 and 3) as GPIOs of the script, using Serial to TCP Bridge. Compile your firmware with USE_TCP_BRIDGE, disable the script and configure in module parameters TCP Tx and TCP Rx. After module reboot, start the server with command TCPStart 8888. Connect to this port from your PC to see or dump the data, in Linux it's as easy as cat < /dev/tcp/IP.OF.YOUR.TASMOTA/8888 > rawdump.txt. To revert to SML you need to set back both GPIO ports to None, enable the script and restart.

Commands~

  • sensor53 r = resets the sml driver, must be applied in script >B section
  • sensor53 cx num = sets counter x (1 or 2) to number (persistent change)
  • sensor53 dm = sets dump mode for meter m (1...N), must be set to 0 for normal operation
  • sensor53 l x = set an optional LED GPIO pin to indicate serial activity of a meter, set to 255 for disable
  • sensor53 m x = sets the meter from which to show activity via the l cmd

Smart Meter Descriptors~

ABB B23 (MODBus)~

Meter is basically the same as Janitza B23 with the same interface. It's just missing whole section of registers which are used in Janitza B23 example.

Beware that A and B MODBus connectors are switched!

View script
>D>B->sensor53 r>M 1+1,3,m,0,9600,ABB,1,10,01035B00,01035B02,01035B04,01035B14,01035B16,01035B18,01035B1A,r010350080004,r010350000004,r0103500400041,010304UUuuUUuu@i0:10,Voltage L1-N,V,Voltage_L1,11,010304UUuuUUuu@i1:10,Voltage L2-N,V,Voltage_L2,11,010304UUuuUUuu@i2:10,Voltage L3-N,V,Voltage_L3,11,010304SSssSSss@i3:100,Active power Total,W,Active_power_Total,21,010304SSssSSss@i4:100,Active power L1-N,W,Active_power_L1,21,010304SSssSSss@i5:100,Active power L2-N,W,Active_power_L2,21,010304SSssSSss@i6:100,Active power L3-N,W,Active_power_L3,21,010308xxxxxxxxSSssSSss@i7:100,Real energy,kWh,Real_energy,21,010308xxxxxxxxUUuuUUuu@i8:100,Real energy consumed,kWh,Real_energy_consumed,21,010308xxxxxxxxUUuuUUuu@i9:100,Real energy delivered,kWh,Real_energy_delivered,2#

ABB B-Series (like B21, B23) (M-Bus over Infrared port)~

Using the IR Port on left side of the device. The IR interface does NOT support MODBUS, only M-Bus (Meter Bus) and EQ-Bus protocol. Configure the IR output at the device menu. This example is using 9600 baud and address 10h (16 decimal) for the meter.
The meter is using equal parity 1 stop bit 9600E1 The upper diode is TX the lower RX. My device is sending always 2 telegrams. I tried to add additional values by sending SND_UD telegram. I only receive the e5 response showing that the request was accepted. No change in response. The last telegram will end on a "0F xx 16" instead of a "1F xx 16", which will show that additional telegrams are available. If you can receive more telegrams, add alternating 107b108b16 - 105b106b16. One for each telegram. This example will only work with address 10! the second last byte is a check sum. For this REQ_UD2 it is the sum of the 2 bytes before (Address and VIF).

View script
>M 1+1,3,rE1,0,9600,ABB,1,10,1040105016,107b108b16,105b106b16[,107b108b16[,105b106b16]] 1,081072bcd8@1,Meter ID,,ID,0 ; meter ID (BCD-8)1,0E8400bcd8@100,E Imp total,kWh,Imp,2 ; Total imported energy 0.01 kWh1,04A900ssSSssSSs@100,P total,W,P_tot,2 ; Total Power 0.01 W1,04A9FF8100ssSSssSSs@100,P L1,W,P_L1,2 ; L1 Power 0.01 W1,04A9FF8200ssSSssSSs@100,P L2,W,P_L2,2 ; L2 Power 0.01 W1,04A9FF8300ssSSssSSs@100,P L3,W,P_L3,2 ; L3 Power 0.01 W1,04FDC8FF8100uuUUuuUUs@10,U L1,V,U_L1,1 ; Voltage L1 0.1 V1,04FDC8FF8200uuUUuuUUs@10,U L2,V,U_L2,1 ; Voltage L2 0.1 V1,04FDC8FF8300uuUUuuUUs@10,U L3,V,U_L3,1 ; Voltage L3 0.1 V1,0AFFD900bcd4@100,*,Hz,F,2 ; Frequency1,0E84FF8100bcd8@100,E Imp L1,kWh,Imp-L1,2 ; L1 imported energy 0.01 kWh1,0E84FF8200bcd8@100,E Imp L2,kWh,Imp-L2,2 ; L2 imported energy 0.01 kWh 1,0E84FF8300bcd8@100,E Imp L3,kWh,Imp-L3,2 ; L3 imported energy 0.01 kWh#

Apator 12EC3~

Energy provider supplied a PIN code to enable output of additional data.

View script
>D>B=>sensor53 r>M 1+1,3,o,0,300,Strom,1,30,2F3F210D0A,063030300D0A1,1.8.0*00(@1,Gesamtverbrauch,kWh,Pges,21,1.8.1*00(@1,Tagesverbrauch,kWh,Total_day,21,1.8.2*00(@1,Nachtverbrauch,kWh,Total_night,21,2.8.0*00(@1,Einspeisung,kWh,Total_out,2#

Apator 12EC3G~

No PIN code needed for output data. It can only display total consumption.

View script
>D>B=>sensor53 r>M 1+1,3,o,0,300,Strom,1,30,2F3F210D0A,063030300D0A1,1.8.0*00(@1,Gesamtverbrauch,kWh,Pges,2#

Apator APOX+ (SML)~

Energy provider supplied a PIN code to enable output of additional data.

View script
>D >B ->sensor53 r>M 1 +1,3,s,0,9600,SML1,77070100010801ff@1000,Verbrauch_Tarif_1,kWh,Total_Tarif1,31,77070100010802ff@1000,Verbrauch_Tarif_2,kWh,Total_Tarif2,31,77070100010800ff@1000,Verbrauch_Summe,kWh,Total_Summe,31,77070100100700ff@1,Current consumption,W,Power_curr,31,=h ---- 1,770701001f0700ff@1,Current L1,A,Curr_p1,3 1,77070100330700ff@1,Current L2,A,Curr_p2,3 1,77070100470700ff@1,Current L3,A,Curr_p3,3 1,=h ---- 1,77070100200700ff@1,Voltage L1,V,Volt_p1,3 1,77070100340700ff@1,Voltage L2,V,Volt_p2,3 1,77070100480700ff@1,Voltage L3,V,Volt_p3,3#

Apator Norax 3D (SML)~

View script
>D>B->sensor53 r>M 1+1,3,s,0,9600,SML1,77070100010800ff@1000,Total consumption,kWh,Total_in,41,77070100020800ff@1000,Total Feed,kWh,Total_out,41,77070100100700ff@1,Current consumption,W,Power_curr,01,77070100200700ff@1,Voltage L1,V,Volt_p1,11,77070100340700ff@1,Voltage L2,V,Volt_p2,11,77070100480700ff@1,Voltage L3,V,Volt_p3,11,770701001f0700ff@1,Amperage L1,A,Amperage_p1,11,77070100330700ff@1,Amperage L2,A,Amperage_p2,11,77070100470700ff@1,Amperage L3,A,Amperage_p3,11,77070100510704ff@1,Phaseangle I-L1/U-L1,deg,phase_angle_p1,1 1,7707010051070fff@1,Phaseangle I-L27I-L2,deg,phase_angle_p2,1 1,7707010051071aff@1,Phaseangle I-L3/I-L3,deg,phase_angle_p3,1 1,770701000e0700ff@1,Frequency,Hz,frequency,0#
SML with daily values
>D pin=0 pout=0 pi_d=0 po_d=0 hr=0 ; permanent midnight values p:pi_m=0 p:po_m=0 >B ->sensor53 r >T ; get total consumption and total feed pin=SML#Total_in pout=SML#Total_out >S ; at midnight, save meter total values hr=hours if chg[hr]>0 and hr==0 then pi_m=pin po_m=pout svars endif ; on teleperiod calculate current daily values from midnight if upsecs%tper==0 then pi_d=pin-pi_m po_d=pout-po_m endif ; show these values on WEB UI >W Tagesverbrauch: {m} %pi_d% kWh Tageseinspeisung: {m} %po_d% kWh ; transmit these values with MQTT >J ,"daily_consumption":%pi_d%,"daily_feed":%po_d% ; meter definition >M 1 +1,3,s,0,9600,SML 1,77070100010800ff@1000,Total Consumed,kWh,Total_in,4 1,77070100020800ff@1000,Total Delivered,kWh,Total_out,4 1,77070100100700ff@1,Current Consumption,W,Power_curr,0 1,77070100000009ff@#,Meter Number,,Meter_number,0 #

Apator Norax 3D+ (SML)~

This script gives also the wattage per phase. Make sure to get the PIN from your grid operator! Tested on a WeMos D1 mini with an IR Head from https://agalakhov.github.io/ir-interface connected to the RX pin (3). The meter also outputs the phase angles, but i left them out since i do not need them. You can easily find additional values by activating the debug mode ("sensor53 d1" for the first meter, switch off after a few seconds with "sensor53 d0").

View script
>D>B->sensor53 r>M 1+1,3,s,1,9600,SML1,77070100010800ff@1000,Total consumption,kWh,Total_in,41,77070100020800ff@1000,Total Feed,kWh,Total_out,41,77070100100700ff@1,Current consumption,W,Power_curr,01,77070100200700ff@1,Voltage L1,V,Volt_p1,11,77070100340700ff@1,Voltage L2,V,Volt_p2,11,77070100480700ff@1,Voltage L3,V,Volt_p3,11,770701001f0700ff@1,Amperage L1,A,Amperage_p1,11,77070100330700ff@1,Amperage L2,A,Amperage_p2,11,77070100470700ff@1,Amperage L3,A,Amperage_p3,11,77070100240700ff@1,Current consumption L1,W,Power_curr_p1,01,77070100380700ff@1,Current consumption L2,W,Power_curr_p2,01,770701004c0700ff@1,Current consumption L3,W,Power_curr_p3,01,770701000e0700ff@1,Frequency,Hz,frequency,0#

Apator Picus eHZ.060.D/J (SML)~

Make sure to acquire the PIN from your energyprovider. After unlocking the meter, you can run the following script

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,PICUS1,77070100100700ff@1,Consumption (Current),W,curr_w,01,77070100010800ff@1000,Consumption (Total),Kwh,total_kwh,21,77070100020800ff@1000,feed (Total),Kwh,total_kwh_out,2#

Carlo Gavazzi EM340 (MODBus RTU)~

View script
>D>B->sensor53 r;->sensor53 d1>M 1+1,13,m,0,115200,MODBUS,12,2,01030000,01030002,01030004,0103000C,0103000E,01030010,01030012,01030014,01030016,01030018,0103001A,0103001C,0103001E,01030020,01030022,01030034,01030038,0103002e,0103002f,01030030,0103004e1,010304SSssSSsss@i0:10,Voltage L1,V,Voltage_L1,11,010304SSssSSsss@i1:10,Voltage L2,V,Voltage_L2,11,010304SSssSSsss@i2:10,Voltage L3,V,Voltage_L3,11,010304SSssSSsss@i3:1000,Current L1,A,Current_L1,31,010304SSssSSsss@i4:1000,Current L2,A,Current_L2,31,010304SSssSSsss@i5:1000,Current L3,A,Current_L3,31,010304SSssSSsss@i6:10,Power L1,W,Power_L1,11,010304SSssSSsss@i7:10,Power L2,W,Power_L2,11,010304SSssSSsss@i8:10,Power L3,W,Power_L3,11,010304SSssSSsss@i9:10,Power VA L1,VA,Power_va_L1,11,010304SSssSSsss@i10:10,Power VA L2,VA,Power_va_L2,11,010304SSssSSsss@i11:10,Power VA L3,VA,Power_va_L3,11,010304SSssSSsss@i12:10,Power var L1,var,Power_var_L1,11,010304SSssSSsss@i13:10,Power var L2,var,Power_var_L2,11,010304SSssSSsss@i14:10,Power var L3,var,Power_var_L3,11,010304SSssSSsss@i15:10,Energy Tot,kWh,Energy_Tot,11,010304SSssSSsss@i16:10,Energy Demand,W,Energy_Demand,11,010304SSss@i17:1000,PF L1,PF,PF_L1,11,010304SSss@i18:1000,PF L2,PF,PF_L2,11,010304SSss@i19:1000,PF L3,PF,PF_L3,11,010304SSssSSsss@i20:10,Energy Tot Export,kWh,Energy_Tot_Export,1#

COMBO Meter (Water, Gas, SML)~

View script
>D >B ->sensor53 r>M 3 +1,1,c,0,10,H20 +2,4,c,0,50,GAS +3,3,s,0,9600,SML 1,1-0:1.8.0*255(@10000,Water reading,cbm,Count,4 2,=h================== 2,1-0:1.8.0*255(@100,Gas reading,cbm,Count,3 3,77070100010800ff@1000,Total consumption,kWh,Total_in,3 3,=h================== 3,77070100100700ff@1,Current consumption,W,Power_curr,2 3,=h ---- 3,=m 10+11+12 @100,Currents L1+L2+L3,A,Curr_summ,2 3,=m 13+14+15/#3 @100,Voltage L1+L2+L3/3,V,Volt_avg,2 3,=h================== 3,77070100240700ff@1,Consumption P1,W,Power_p1,2 3,77070100380700ff@1,Consumption P2,W,Power_p2,2 3,770701004c0700ff@1,Consumption P3,W,Power_p3,2 3,=h ---- 3,770701001f0700ff@100,Current L1,A,Curr_p1,2 3,77070100330700ff@100,Current L2,A,Curr_p2,2 3,77070100470700ff@100,Current L3,A,Curr_p3,2 3,=h ---- 3,77070100200700ff@100,Voltage L1,V,Volt_p1,2 3,77070100340700ff@100,Voltage L2,V,Volt_p2,2 3,77070100480700ff@100,Voltage L3,V,Volt_p3,2 3,=h================== 3,77070100000009ff@#,Service ID,,Meter_id,0 3,=h # 

DDM18SD (MODBus)~

This script, based on tasmota scripting language, is to read data on a unsupported DDM18SD power meter. It has 8E1 parity and the slave ID address is n 5. On a Nodemcu or Wemos D1 board, put wires between GPIO3 and GPIO1 to the RX and TX pinout of a RS485 to TTL board, but leave empty (none) the GPIO Tasmota software settings. A & B connected to the meter pinout.

View script
>B ->sensor53 r>M 1 +1,3,M,0,9600,DDM,1,2,05040000,05040008,05040012,0504001A,05040036,0504002A,05040100,050404001,050404ffffffff@i0:1,Tensione,V,DDM_Voltage,2 1,050404ffffffff@i1:1,Corrente,A,DDM_Current,2 1,050404ffffffff@i2:1,Consumo Ist.,W,DDM_Power,21,050404ffffffff@i3:1,Reactive power,Var,DDM_React_Power,21,050404ffffffff@i4:1,Frequenza,Hz,DDM_Frequency,2 1,050404ffffffff@i5:1,Power factor,,DDM_PF,21,050404ffffffff@i6:1,Consumi tot.,Kwh,DDM_Tot_Power,21,050404ffffffff@i7:1,Tot. react. power,Kvarh,DDM_Reac_Power,2#

Digimeto GS303 (SML)~

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,GS3031,77070100010800ff@1000,Total Consumed,kWh,Total_in,31,77070100100700ff@1,Current Consumption,W,Power_cur,01,77070100020800ff@1000,Total Delivered,kWh,Total_out,31,7707010060320101@#,Service ID,,Meter_id,0# 

DZG DWZE12.2.G2 (DVZE) (SML)~

A bidirectional metering device from DZG Metering GmbH.

View script for the extended dataset
>D>B=>sensor53 r>M 1+1,3,s,16,9600,DWZE121,77070100010800ff@1000,Total Energy In,kWh,TotalIn,31,77070100020800ff@1000,Total Energy Out,kWh,TotalOut,31,77070100100700ff@1,Current Power,W,CurrPower,31,77070100600100ff@#,Meter Id,,MeterId,0#

DZG DWS7410.2V.G2 (SML) and DZG DVS7420.2 (SML)~

A bidirectional metering device from DZG Metering GmbH.

Once unlocked with a PIN and set to Inf on, the meter returns not only an integer of the total consumption, but an extended dataset which also includes decimals as well as the current power.

View script for the extended dataset
>D>B=>sensor53 r>M 1+1,3,s,16,9600,DWS74101,77070100010800ff@1000,Energie,kWh,energy,41,77070100020800ff@1000,Lieferung,kWh,en_out,41,77070100100700ff@1,Leistung,W,power,21,7707010060320101@#,SID,,meter_id,0#

The script was derived from the DZG DWS76 (SML) device below and extended by the delivered energy. The lines for meter_id, unknown and meter_number were reduced to one line for meter_id because all values were identical.

For Inf off, a simplified dataset is returned only.

Alternative script for the simplified dataset
>D>B=>sensor53 r>M 1+1,3,s,16,9600,DWS74101,77070100010800ff@1000,Energie,kWh,energy,01,7707010060320101@#,Service ID,,meter_id,01,77010b0a01445a47@#,Unbekannt,,unknown,01,77070100600100ff@#,Zählernummer,,meter_number,0#

DZG DWS7412.1.G2 (SML)~

A uni-directional metering device from DZG Metering GmbH.

Once unlocked with a PIN and set to Inf on, the meter returns not only an integer of the total consumption, but an extended dataset which also includes decimals as well as the current power.

View script for the extended dataset
>D>B=>sensor53 r>M 1+1,3,s,16,9600,DWS74121,77070100010800ff@1000,Energy,kWh,energy,41,77070100240700ff@1,Power,W,power,21,7707010060320101@#,Service ID,,meter_id,0#

For Inf off, a simplified dataset is returned only.

Alternative script for the simplified dataset
>D>B=>sensor53 r>M 1+1,3,s,16,9600,DWS74121,77070100010800ff@1000,Energy,kWh,energy,41,7707010060320101@#,Service ID,,meter_id,0#

DZG DWS76 (SML)~

Should also be applicable to many other DZG Metering GmbH meters, like DVS76, DVS74, DWS74 or in general DxS7x - not tested though. Succesfully tested with DWS7612.1T

Once unlocked with a PIN and set to Inf on, the meter returns not only an integer of the total consumption, but an extended dataset which also includes decimals as well as the current power. Further values unknown yet.

View script for the extended dataset
>D>B=>sensor53 r>M 1+1,3,s,16,9600,DWS76121,77070100010800ff@1000,Energie,kWh,energy,41,77070100100700ff@1,Leistung,W,power,21,7707010060320101@#,Service ID,,meter_id,01,77010b0a01445a47@#,Unbekannt,,unknown,01,77070100600100ff@#,Zählernummer,,meter_number,0# 

For Inf off, a simplified dataset is returned only.

Alternative script for the simplified dataset
>D>B=>sensor53 r>M 1+1,3,s,16,9600,DWS76121,77070100010800ff@1000,Energie,kWh,energy,01,7707010060320101@#,Service ID,,meter_id,01,77010b0a01445a47@#,Unbekannt,,unknown,01,77070100600100ff@#,Zählernummer,,meter_number,0#

DZG DWSB12.2 (SML)~

For Inf off, a simplified dataset is returned. The energy meter does have 2 meters, one for incoming and outgoing power. If you have a solar panel installed and you are delivering power to the network the second value will increase appropriately.

Alternative script for the simplified dataset
>D>B=>sensor53 r>M 1+1,3,s,16,9600,DWSB1221,77070100010800ff@1000,Energie bezogen,kWh,energy,01,77070100020800ff@1000,Energie geliefert,kWh,energy,01,7707010060320101@#,Service ID,,meter_id,01,77010b0a01445a47@#,Unbekannt,,unknown,01,77070100600100ff@#,Zählernummer,,meter_number,0#

EasyMeter Q3A / Apator APOX+ (SML)~

A 2-Tariff Meter which for Example SWM (Stadtwerke München) oder DGY (Discovergy) uses. Unfortunately this Version sends only whole kWh (precision 0) without PIN. With PIN behaviour changes and high resolution is available as seen below (e.g. precision 7 for consumption/kWh, precision 2 for power/W, precision 1 for voltage/V).

Apator APOX+ behaves same as the EasyMeter while pin locked, just precision 0 without additional data. After calling the energy provider they send a letter with the unlock pin.

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,SML1,77070100010801ff@1000,Verbrauch_Tarif_1,kWh,Verbrauch_T1,71,77070100010802ff@1000,Verbrauch_Tarif_2,kWh,Verbrauch_T2,71,77070100010800ff@1000,Verbrauch_Summe,kWh,Verbrauch_Summe,71,77070100020800ff@1000,Einspeisung_Summe,kWh,Einspeisung_Summe,71,=h-- 1,77070100240700ff@1,Leistung_L1,W,Watt_L1,21,77070100380700ff@1,Leistung_L2,W,Watt_L2,21,770701004c0700ff@1,Leistung_L3,W,Watt_L3,21,77070100100700ff@1,Leistung_Summe,W,Watt_Summe,21,=h-- 1,77070100200700ff@1,Spannung_L1,V,Volt_L1,11,77070100340700ff@1,Spannung_L2,V,Volt_L2,11,77070100480700ff@1,Spannung_L3,V,Volt_L3,1#

EasyMeter Q3B (SML)~

Two separate 2-Tariff meters (e.g. from Fairenergie Reutlingen) are readout by the same Tasmota device. The first one is for general purpose and is connected to GPIO14. The JSON prefix is set to Power. The second one is for the heat pump and connected to GPIO13. The JSON prefix is set to Pump. For both meters, tariff 1 & 2 are rounded kWh (precision 0), actual consumption in W has a higher precision (1).

View script
>D>B=>sensor53 r>M 2+1,14,s,0,9600,Power1,77070100010801ff@1000,Tarif 1,kWh,Power_T1,01,77070100010802ff@1000,Tarif 2,kWh,Power_T2,01,77070100010800ff@1000,Summe,kWh,Power_Sum,01,77070100010700ff@1000,Verbrauch,W,Power_Use_Sum,1+2,13,s,0,9600,Pump2,77070100010801ff@1000,Tarif 1,kWh,HP_T1,02,77070100010802ff@1000,Tarif 2,kWh,HP_T2,02,77070100010800ff@1000,Summe,kWh,HP_Sum,02,77070100010700ff@1000,Verbrauch,W,HP_Use_Sum,1 #

EasyMeter Q3D, Q3DA1024 (OBIS)~

The Q3D is a three-phase model energy meter, which was sold in a number of different configurations. This is a legacy device, however still available new in some shops. The most popular model seems to be the two-direction model for solar power metering. The D0 port is read-only with a fixed time interval of two seconds. The communication settings are unusual: 7 data bits, even parity, one stop bit, 9600 baud (9600 7E1).

Because the 7E1 serial mode is not supported by Tasmota software serial, the hardware serial port must be used, i.e. GPIO 3. This will /not/ work using GPIO 0 or 2.

Also, the source code has to be patched from 8N1 to 7E1 mode for the hardware serial in file src/TasmotaSerial.cpp, please see the patch further down below. Since Tasmota 9.5.0 the serial mode can be changed in the console by typing SerialConfig 7E1 without having to patch TasmotaSerial.

Example reading of the two-direction model using GPIO 3 - P_in power reading will be negative in case of inverse power flow:
>D>B=>sensor53 r>M 1+1,12,o,0,9600,SML,11,1-0:1.7.255*255(@1,P_in,W,P_in,181,1-0:21.7.255*255(@1,L1,W,L1,181,1-0:41.7.255*255(@1,L2,W,L2,181,1-0:61.7.255*255(@1,L3,W,L3,181,1-0:1.8.0*255(@1,E_in,kWh,E_in,191,1-0:2.8.0*255(@1,E_out,kWh,E_out,191,1-0:0.0.0*255(@1,Netzbetreiber-ID,,NetID,01,0-0:96.1.255*255(@#),Seriennummer,,serial,0#
Alternative script running on a Wemos D1 mini on hardware serial pin 3 for the Q3DB1024 two direction
>D>B=>sensor53 r>M 1+1,3,o,0,9600,Haupt,11,1-0:1.7.0*255(@1,P_in,W,P_in,181,1-0:1.8.0*255(@1,E_in,kWh,E_in,191,1-0:2.8.0*255(@1,E_out,kWh,E_out,191,1-0:21.7.0*255(@1,L1,W,L1,181,1-0:41.7.0*255(@1,L2,W,L2,181,1-0:61.7.0*255(@1,L3,W,L3,181,1-0:0.0.0*255(@1,Netzbetreiber-ID,,NetID,01,0-0:96.1.255*255(@#),Seriennummer,,serial,0# 
Apply following patch to src/TasmotaSerial.cpp
--- a/lib/default/TasmotaSerial-3.2.0/src/TasmotaSerial.cpp+++ b/lib/default/TasmotaSerial-3.2.0/src/TasmotaSerial.cpp@@ -117,7 +117,7 @@ bool TasmotaSerial::begin(long speed, int stop_bits) { if (2 == m_stop_bits) { Serial.begin(speed, SERIAL_8N2); } else {- Serial.begin(speed, SERIAL_8N1);+ Serial.begin(speed, SERIAL_7E1); } if (m_hardswap) { Serial.swap();

eBZ DD3 (OBIS/SML)~

The eBZ DD3 by eBZ GmbH is a three-phase model energy meter, which is sold in a number of different configurations. The D0 port is read-only with a fixed time interval of one second.

There are two communication interfaces:

  • The INFO interface on the front, with a metal backplate. Pushes a reduced OBIS ASCI/SML binary datagram every second.
  • The MSB interface on the top, no metal backplate. Pushes a full OBIS ASCI/SML binary datagram every second.

There are two types available using different communication settings:

  • OD-type: 7 data bits, even parity, one stop bit, 9600 baud (9600 7E1) - OBIS ASCI protocol
  • SM-type: 8 data bits, no parity, one stop bit, 9600 baud (9600 8N1) - SML binary protcol

Tested with an eBZ DD3 2R06 ODZ1 (two-direction model for e. g. solar power metering).

Because the 7E1 serial mode is not supported by Tasmota software serial, the hardware serial port must be used, i.e. GPIO 3. This will /not/ work using GPIO 0 or 2.

Change the serial mode in the console by typing SerialConfig 7E1.

Example reading of the two-direction model using GPIO 3:

  • "TelePeriod 30" sets telemetry period to 30 seconds (remove if not needed/wanted)
  • Values for ?6.7.0 (power) are transmitted immediately (precision + 16)
  • power readings will be negative in case of inverse power flow
View script
>D>BTelePeriod 30=>sensor53 r>M 1; Device: eBZ DD3 2R06 ODZ1; protocol is D0 OBIS ASCII; 9600@7E1 for OP-type devices, 9600@8N1 for SM-type devices+1,3,o,0,9600,SM,1; Zählerstand zu +A, tariflos, ; Zählerstände Auflösung 10 µW*h (6 Vorkomma- und 8 Nachkommastellen)1,1-0:1.8.0*255(@0.001,Energie Bezung,Wh,1_8_0,8; Zählerstand zu +A, Tarif 11,1-0:1.8.1*255(@0.001,Energie Bezung T1,Wh,1_8_1,8; Zählerstand zu +A, Tarif 21,1-0:1.8.2*255(@0.001,Energie Bezung T2,Wh,1_8_2,8; Zählerstand zu -A, tariflos1,1-0:2.8.0*255(@0.001,Energie Export,Wh,2_8_0,8; Summe der Momentan-Leistungen in allen Phasen, Auflösung 0,01W (5 Vorkomma- und 2 Nachkommastellen)1,1-0:16.7.0*255(@1,Leistung,W,16_7_0,18; Momentane Leistung in Phase Lx, Auflösung 0,01W (5 Vorkomma- und 2 Nachkommastellen)1,1-0:36.7.0*255(@1,Leistung L1,W,36_7_0,181,1-0:56.7.0*255(@1,Leistung L2,W,56_7_0,181,1-0:76.7.0*255(@1,Leistung L3,W,76_7_0,18; Spannung in Phase Lx, Auflösung 0,1V (nur über MSB)1,1-0:32.7.0*255(@1,Spannung L1,V,32_7_0,11,1-0:52.7.0*255(@1,Spannung L2,V,52_7_0,11,1-0:72.7.0*255(@1,Spannung L3,V,72_7_0,1; Statuswort, 4 Byte Information über den Betriebszustand, HEX string; tasmota can decode one string per device only!;1,1-0:96.5.0*255(@#),Status1,,96_5_0,0;1,1-0:96.8.0*255(@#),Status2,,96_8_0,0; Geräte-Identifikation, Nach DIN 43863-5 1,1-0:96.1.0*255(@#),Identifikation,,96_1_0,0;1,1-0:0.0.0*255(@#),Identifikation,,0_0_0,0#
For the SM-type meter DD3 2R06 DTA SMZ1 the following script worked without having to apply the above patch, because it uses 8N1 for communication
>D>B;TelePeriod 30=>sensor53 r>M 1; Device: eBZ DD3 2R06 DTA SMZ1; protocol is D0 SML HEX; 9600@7E1 for OD-type devices, 9600@8N1 for SM-type devices+1,13,s,0,9600,SML; Zählerstand zu +A, tariflos, ; Auflösung 10 µW*h (6 Vorkomma- und 8 Nachkommastellen)1,77070100010800FF@100000000,Energie Bezug,kWh,1_8_0,8; Zählerstand zu +A, Tarif 1; Auflösung 1 W*h (6 Vorkomma- und 3 Nachkommastellen)1,77070100010801FF@1000,Energie Bezug NT,kWh,1_8_1,3; Zählerstand zu +A, Tarif 2; Auflösung 1 W*h (6 Vorkomma- und 3 Nachkommastellen)1,77070100010802FF@1000,Energie Bezug HT,kWh,1_8_2,3; Zählerstand zu -A, tariflos; Auflösung 10 µW*h (6 Vorkomma- und 8 Nachkommastellen)1,77070100020800FF@100000000,Energie Export,kWh,2_8_0,8; Summe der Momentan-Leistungen in allen Phasen, Auflösung 0,01W (5 Vorkomma- und 2 Nachkommastellen)1,77070100100700FF@1,Leistung,W,16_7_0,18; Momentane Leistung in Phase Lx, Auflösung 0,01W (5 Vorkomma- und 2 Nachkommastellen)1,77070100240700FF@1,Leistung L1,W,36_7_0,181,77070100380700FF@1,Leistung L2,W,56_7_0,181,770701004C0700FF@1,Leistung L3,W,76_7_0,18; Spannung in Phase Lx, Auflösung 0,1V (nur über MSB)1,77070100200700FF@1,Spannung L1,V,32_7_0,11,77070100340700FF@1,Spannung L2,V,52_7_0,11,77070100480700FF@1,Spannung L3,V,72_7_0,1; Statuswort, 4 Byte Information über den Betriebszustand, HEX string; tasmota can decode one string per device only!;1,1-0:96.5.0*255@#),Status1,,96_5_0,0;1,1-0:96.8.0*255@#),Status2,,96_8_0,0; Hersteller-Identifikation, Hersteller-Kennung und Typ mit Software Version;1,77078181C78203FF@#),Herstellerkennung,,Typ,0; Eigentumsnummer nach Kundenwunsch, sonst nach DIN 43863-5;1,77070100000000FF@#),Eigentumsnummer,,0_0_0,0; Geräte-Identifikation, Nach DIN 43863-5 ;1,77070100000009FF@#),Identifikation,,96_1_0,0#

eBZ MD3 (SML)~

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,Smartmeter1,77070100010800ff@100000000,Total consumption,kWh,Total_in,31,77070100020800ff@100000000,Total generation,kWh,Total_out,31,77070100100700ff@1,Power L1+L2+L3,W,P_L1_L2_L3,181,77070100240700ff@1,Power L1,W,P_L1,181,77070100380700ff@1,Power L2,W,P_L2,181,770701004C0700ff@1,Power L3,W,P_L3,18#

EasyMeter Q1A (SML)~

The Q1A series of EasyMeter is available as one- or two-way meter, with and without backstop respectively. It is also available as single or dual tariff meter. The script below works for the Q1Ax1054 variant. This variant is a single-tariff one-way meter with a backstop mechanism. The script only reads two values: the energy counter value and the current power value.

The meter has no bidirectional IR-communication port, only an "INFO-DSS" send-only IR-LED. It also has no metal plate to attach a magnet so the IR reader has to be attached in another way.

The current power and counter in high resolution are available after PIN entry with a flashlight, see manual.

View script
>D>B=>sensor53 r>M 1+1,3,s,16,9600,SML1,77070100010800ff@1000,Zaehlerstand,kWh,Counter,61,77070100100700ff@1,Verbrauch,W,Power,1#

EasyMeter Q1D (ASCII OBIS)~

This script is for the EasyMeter Q1DB1004 variant of the Q1D series. This variant is a one-phase one-way electricity counter with a backstop mechanism.

Therefore the script reads only two values: the energy counter value and the power value. The power value is positive when you are drawing power from the public grid, and negative when you are feeding power to the public grid. Due to the backstop mechanism, the energy counter value will not decrease when you feed power to the public grid.

The meter's manufacturer's datasheet neatly explains the serial message format used, so you can easily adapt the code below to your EasyMeter Q1D, e.g. if you have a two-way counter variant like the EasyMeter Q1DA1026.

View script
>D>B=>sensor53 r>M 1+1,3,o,0,9600,SML1,1-0:1.8.0*255(@1,EC_CounterVal,kWh,EC_CounterVal,41,1-0:61.7.255*255(@1,EC_PowerVal,W,EC_PowerVal,0#

According to the manufacturer's datasheet, the serial parameters are 9600 baud and 7E1.

For Tasmota versions that are built with a TasmotaSerial.cpp of version 3.5.0 (and probably all higher versions, too), no modification of the TasmotaSerial.cpp source code (as suggested in other entries of this documentation) is necessary to set the serial parameters to 7E1: By configuring the meter type as OBIS ("o") in line 5 of the above code, you implicitly tell Tasmota to set the serial parameters to 7E1 (probably the same applies to all other meters in this documentation where a modification of TasmotaSerial.cpp has previously been recommended).

EFR SGM-C2/C4/D4 (SML)~

By default, the energy meter only sends the total energy values. To be able to read all the other values, you need to enter the PIN and set InF on. The PIN must be requested from the metering provider, which is usually your local grid provider and not your energy provider (but they know whom to ask). After entering the PIN and setting InF on, all the values will be available. The jsonPrefix ENERGY and variable names (between second to last and last ,) Total, Power, Voltage and Current are chosen to match the regular MQTT message format, used by tasmota powerplugs. For SGM-C4 or SGM-D4, double-tariff variants or meters measuring supply remove the appropriate leading ; to uncomment and enable the values you are interested in.

View script
>D>B->sensor53 r>M 1+1,3,s,16,9600,ENERGY1,77070100010800ff@1000,Comsumption,kWh,Total,4;for meters measuring feed-in SGM-Cx-xxx2xx;1,77070100020800ff@1000,Supply,kWh,Supply,4;next 4 lines for double-tariff meters SGM-Cx-xxxxTx;1,77070100010801ff@1000,Comsumption_t1,kWh,Total_t1,4;1,77070100010802ff@1000,Comsumption_t2,kWh,Total_t2,4;1,77070100020801ff@1000,Supply_t1,kWh,Supply_t1,4;1,77070100020802ff@1000,Supply_t2,kWh,Supply_t2,4;all commented lines from here on for 3-phase meter SGM-C41,77070100100700ff@1,Actual Power,W,Power,01,77070100200700ff@1,Voltage L1,V,Voltage,1;1,77070100340700ff@1,Voltage L2,V,Voltage_L2,1;1,77070100480700ff@1,Voltage L3,V,Voltage_L3,11,770701001f0700ff@1,Current L1,A,Current,2;1,77070100330700ff@1,Current L2,A,Current_L2,2;1,77070100470700ff@1,Current L3,A,Current_L3,2;1,77070100510701ff@1,Phaseangle L2-L1,deg,phase_angle_L2_L1,0;1,77070100510702ff@1,Phaseangle L3-L1,deg,phase_angle_L3_L1,01,77070100510704ff@1,Phaseangle I/U L1,deg,phase_angle_L1,1 ;1,7707010051070fff@1,Phaseangle I/U L2,deg,phase_angle_L2,1 ;1,7707010051071aff@1,Phaseangle I/U L3,deg,phase_angle_L3,1 1,770701000e0700ff@1,Frequency,Hz,Freq,1;all commented lines from here on just for completeness;1,7707010000020000@1,Firmware Version,,FwVer,0;1,77070100605a0201@1,Firmware Checksum,,FwCheck,0;1,7707010061610000@1,Error Register,,ErrorReg,0;1,7707010060320101@1,Hardware Version,,HwVer,0;1,7707010060320104@1,Parameter Version,,ParamVer,01,77070100600100ff@#,Server-ID,,ID,0;You can find your server-id printed on your meter. If you want you can also convert it to your Identifikationsnummer with some ASCII, DEC and HEX encoding. 0A-01-45-46-52-ST-UV-WX-YZ = 1EFR + string(S) + string(T) + hexToDec(UVWXYZ)#

Overview of the codes Smart Meter Interface - Tasmota (1)

Elster / Honeywell AS1440 (OBIS)~

Based on Landis script with changed timings in the >F section, as AS1440 seems to be slower in responding.

This defines metrics for totals and current power usage for both incoming and outgoing power. Just delete the lines you don't need from the last sections.
Current power values get published to mqtt immediately when received from the meter.

View script
>Dscnt=0res=0>B=>sensor53 r>F; count 100msscnt+=1switch scnt;300ms after start: set sml driver to 300 baud and send /?! as HEX to trigger the Metercase 3res=sml(1 0 300)res=sml(1 1 "2F3F210D0A");1700ms later: Ack and ask for switching to 9600 baudcase 20res=sml(1 1 "063035300D0A");300ms later: switch sml driver to 9600 baudcase 23res=sml(1 0 9600);6000ms after start: Restart sequencecase 60scnt=0ends>M 1+1,3,o,0,9600,AS1440,11,1.7.0(@0.001,Power In,W,power_in,161,1.8.1(@1,Total In,kWh,Total_in,11,2.7.0(@0.001,Power Out,W,power_out,161,2.8.1(@1,Total Out,kWh,Total_out,1#

Elster F96 Plus (Sharky 775) (Ditech Integral-V UltraLite PRO) M-Bus~

This heat meter needs a wakeup sequence with 2400 Baud 8N1, wheras communication is done by 2400 Baud 8E1. The script will therefore only rund starting with Tasmota 12.2 where switching parity is implemented. For compiling, add the following to your user_config_override.h to increase serial communication buffer size and enable MQTT and Web publishing:

View user_config_override.h
#ifndef USE_SCRIPT#define USE_SCRIPT#endif#ifndef USE_SML_M#define USE_SML_M#endif#ifdef USE_RULES#undef USE_RULES#endif#ifndef SML_BSIZ#define SML_BSIZ 200#endif#ifndef USE_SML_SCRIPT_CMD#define USE_SML_SCRIPT_CMD#endif#ifndef USE_SCRIPT_JSON_EXPORT#define USE_SCRIPT_JSON_EXPORT#endif#ifndef USE_SCRIPT_WEB_DISPLAY#define USE_SCRIPT_WEB_DISPLAY#endif

Delta calculation for previous day is included as the meter shall not be read often when operated with a battery.

View script
>D;start, define variablescnt=1timer=1w_new=0w_delta=0p:w_last=0>B;setup sensor->sensor53 r>Tw_new=WAERME#w_total>Stimer=int(time)if chg[timer]>0 thenswitch timercase 0print It is midnightprint wakeup startsml(-1 1 "2400:8N1")for cnt 1 72 1sml(1 1 "55555555555555555555")nextprint wakeup endprint wait for the meterdelay(350)sml(-1 1 "2400:8E1")print request datasml(1 1 "105BFE5916")case 1print It is a minute after midnightprint calculating daily valueprint w_last %0w_last%w_delta=w_new-w_lastw_last=w_newsvarsprint w_new %0w_new%print w_delta %0w_delta%endsendif>J ,"w_delta":%w_delta% >W===============Vortagsverbrauch: {m} %3w_delta% kWh >M 1+1,3,rE1,0,2400,WAERME,11,0C06bcd8@1,Total Energy,kWh,w_total,01,0C13bcd8@1000,Total volume,m³,v_total,21,0C2Bbcd8@1,Current power,W,p_act,01,0B3Bbcd6@1000,Current flow,m³/h,F_akt,31,0A5Abcd4@10,Flow temp,°C,t_flow,11,0A5Ebcd4@10,Return temp,°C,t_return,11,0A62bcd4@10,Temp diff,°C,t_diff,2#

Elster / Honeywell AS2020 (SML)~

View script
>D>B->sensor53 r>M 1+1,3,s,0,9600,,11,77070100600100ff@#,Server-ID,,Wert,01,77070100010800ff@1000,Total Consumed,kWh,total_consumed_kwh,11,77070100020800ff@1000,Total Delivered,kWh,total_delivered_kwh,11,77070100100700ff@0.1,Current Consumption,W,current_consumption,0#

Elster T510 (OBIS)~

It seems you can not read the total power like 1,1.7.0(@0.001,Leistung,W,Power_curr,0, as the value just alternates between the values of the three phases. So in this script the three phases get added and published as Power_total.

View script
>D;Var for baudrate changingres=0;Var for counter see >F=ms scnt=0 >B->sensor53 r;Set teleperiod to 20sec ;tper=10>F; count 100ms scnt+=1 switch scnt case 6 ;set sml driver to 300 baud and send /?! as HEX to trigger the Meter res=sml(1 0 300) res=sml(1 1 "2F3F210D0A") ;1800ms later \> Ack and ask for switching to 9600 baud case 18 res=sml(1 1 "063035300D0A") ;2000ms later \> Switching sml driver to 9600 baud case 20 res=sml(1 0 9600) ;Restart sequence after 50x100ms case 50 ; 5000ms later \> restart sequence scnt=0 ends >M 1+1,3,o,0,9600,,11,0.0.0(@1,Zählernummer,,Meter_number,01,0.9.1(@#),Zeitstempel,Uhr,timestamp,01,1.8.0(@1,Zählerstand,kWh,Total_in,31,21.7.0(@0.001,Leistung Phase 1,W,Power_L1,01,41.7.0(@0.001,Leistung Phase 2,W,Power_L2,01,61.7.0(@0.001,Leistung Phase 3,W,Power_L3,01,=m 4+5+6 @1,Leistung,W,Power_total,01,31.7.0(@1,Strom Phase 1,A,Current_L1,21,51.7.0(@1,Strom Phase 2,A,Current_L2,21,71.7.0(@1,Strom Phase 3,A,Current_L3,2#

EMH eBZD (SML)~

View script
>D>B->sensor53 r>M 1+1,3,s,0,9600,Main1,77070100100700ff@1,Power,W,power,01,77070100010800ff@1000,Total Consumed,kWh,counter_pos,31,77070100020800ff@1000,Total Feed,kWh,counter_neg,3#

EMH ED300L (SML)~

View script
>D >B ->sensor53 r >M 2 +1,13,s,0,9600,Haus +2,12,s,0,9600,Heizung 1,770701000F0700FF@1,Aktuell,W,Power_curr,0 1,77070100010800FF@1000,Zählerstand Verb.,kWh,Tariflos,2 1,77070100020800FF@1000,Zählerstand Einsp.,kWh,Tariflos,2 2,=h================== 2,770701000F0700FF@1,Aktuell,W,Power_curr,0 2,77070100010800FF@1000,Zählerstand Verb.,kWh,Tariflos,2 2,77070100020800FF@1000,Zählerstand Einsp.,kWh,Tariflos,2 # 

EMH ED300S (SML)~

View script
>D>B->sensor53 r>M 1+1,3,s,0,9600,Main1,77070100100700ff@1,Power,W,power,01,77070100010800FF@1000,Counter,kWh,counter,3#

EMH eHZ Generation K (SML)~

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,1,77070100010800ff@1000,Total consumption,kWh,total_in,21,77070100020800ff@1000,Total feed-in,kWh,total_out,21,77070100100700ff@1,Power,W,power_curr,0#

EMH eHZM (SML)~

Website

Datasheet

Manual (+OBIS Registers)

View script
>D>B->sensor53 r>M 1+1,3,s,0,9600,1,77070100600100FF@#,Zaehlernummer,,serialnr,161,77070100010800FF@1000,Pos Wirkenergie tariflos,kWh,pos_wirk_tariflos,11,77070100010801FF@1000,Pos Wirkenergie Tarif 1,kWh,pos_wirk_tarif_1,11,77070100010802FF@1000,Pos Wirkenergie Tarif 2,kWh,pos_wirk_tarif_2,11,77070100020800FF@1000,Neg Wirkenergie tariflos,kWh,neg_wirk_tariflos,11,77070100020801FF@1000,Neg Wirkenergie Tarif 1,kWh,neg_wirk_tarif_1,11,77070100020802FF@1000,Neg Wirkenergie Tarif 2,kWh,neg_wirk_tarif_2,11,77070100100700FF@1,Momentanwirkleistung,W,momentanwirkleistung,0#

EMH mMe4.0 (SML)~

View script
>D>B->sensor53 r>M 1+1,3,s,0,9600,Main,1,101,77070100010800FF@1000,Total Consumed,kWh,counter_pos,31,77070100020800FF@1000,Total Feed,kWh,counter_neg,31,77070100100700FF@1,Power,W,power,0#

EMH DIZ-W1EL-00-KM0-0M-200010-E50/K (M-Bus)~

View script
>D>B=>sensor53 r>M 1; ***************************************; * EMH DIZ-W1EL-00-KM0-0M-200010-E50/K *; ***************************************; Serial: 2400 baud; Device parity: EVEN; Slave address: 001; ***************************************+1,3,rE1,0,2400,MBUS,1,10,1040014116,105b015c161,68282868080272bcd8@1@1,Zähler-Nr.,,0_0_0,01,68282868080272xxxxxxxxa8150002xxxx00008c1006bcd8@1,total energy,kWh,1_8_0,01,68282868080272xxxxxxxxa8150002xxxx00008c1006xxxxxxxx8c2006xxxxxxxxc4002auuUUuuUUs@10000,instantaneous power,kW,1_7_0,3#

EMH EIZ-GDWL739B (M-Bus)~

View script
>D>B=>sensor53 r>M 1; ***************************************; * EMH EIZ-GDWL739B *; ***************************************; Serial: 2400 baud; Device parity: EVEN; Slave address: 001; ***************************************+1,3,rE1,0,2400,MBUS,1,10,1040014116,105b015c161,68363668080172bcd8@1@1,Zähler-Nr.,,0_0_0,01,68363668080172xxxxxxxxa8150002xxxx0000046dxxxxxxxx0422xxxxxxxx0405uuUUuuUUs@10,total energy,kWh,1_8_0,11,68363668080172xxxxxxxxa8150002xxxx0000046dxxxxxxxx0422xxxxxxxx0405xxxxxxxx042auuUUuuUUs@10000,instantaneous power,kW,1_7_0,3#

EMH LZQJ-XC (OBIS)~

Script to read a EMH metering LZQJ-XC smart meter.

This script is for a smart meter that is set to "Protocol mode A" IEC 62056-21:2002(E) 6.4.1 by the supplier. Therefore it is set to a fixed baud rate of 300 and can not be switched to a higher baudrate.

View script
>Dres=0scnt=0>B=>sensor53 r>F;F section is executed every 100msscnt+=1switch scnt;300ms after start: set sml driver to 300 baud and send /?! as HEX to trigger the Meter.case 3;Statt in >M Sektion hier den Zähler alle 300s triggern. ;Denn das Kommando "+1,5,o,0,300,METER,4,3000,2F3F210D0A" in >M Sektion funktioniert nicht richtig - <txPeriod> = 3000 wird nicht angewendet. ;Der Zähler wird sofort nach dem Auslesen (nach 261s) erneut getriggert, was zu einem Versatz in den Messwerten führt.res=sml(1 0 300)res=sml(1 1 "2F3F210D0A");300000ms after start: Restart sequencecase 3000scnt=0ends>M 1; Device: EMH metering LZQJ-XC; protocol is OBIS ASCII; Gerät mit hex "2F3F210D0A" = ASCII "/?!" aufwecken.; Zaehler EMH LZQJ-XC arbeitet im "Protocol mode A" IEC 62056-21:2002(E) 6.4.1; mit einer festen Baudrate von 300 Baud und kann nicht umgeschaltet werden; Zaehler EMH LZQJ-XC auslesen dauert 4:21 Minuten. Kuerzere TelePeriod als 300sek/5min daher nicht sinnvoll.+1,5,o,0,300,METER,41,0.0.0(@1,Zähler-Nr.,,0_0_0,01,0.0.9(@#),Zähler-ID,,0_0_9,01,0.9.1(@1),Uhrzeit,,0_9_1,01,0.9.2(@1),Datum,,0_9_1,01,1.6.1(@1,MaxBezugT1,kW,1_6_1,31,1.6.2(@1,MaxBezugT2,kW,1_6_2,31,1.8.0(@1,WirkEnBezug,kWh,1_8_0,31,1.8.1(@1,WirkEnBezugNT,kWh,1_8_1,31,1.8.2(@1,WirkEnBezugHT,kWh,1_8_2,31,2.6.1(@1,MaxEinspT1,kW,2_6_1,31,2.6.2(@1,MaxEinspT2,kW,2_6_2,31,2.8.0(@1,WirkEnEinsp,kWh,2_8_0,31,2.8.1(@1,WirkEnEinspNT,kWh,2_8_1,31,2.8.2(@1,WirkEnEinspHT,kWh,2_8_2,31,3.8.0(@1,BlindEnBezug,kvarh,3_8_0,31,3.8.1(@1,BlindEnBezugT1,kvarh,3_8_1,31,3.8.2(@1,BlindEnBezugT2,kvarh,3_8_2,31,4.8.0(@1,BlindEnEinsp,kvarh,4_8_0,31,4.8.1(@1,BlindEnEinspT1,kvarh,4_8_1,31,4.8.2(@1,BlindEnEinspT2,kvarh,4_8_2,3#

Fronius Symo 10.0-3-M (MODBus TCP)~

Fronius inverter, using Modbus TCP feature.

For this script the inverter must be configured to use Sunspec Model Type "int+SF"

View script
>D 48>B=>sensor53 r>M 2+1,[192.168.3.38],m,0,502,mod1,1,10,r01039C8700151,=so3,1281,01032aUUuu@i0:1,AC Current,A,AC_Current,01,01032ax2UUuu@i0:1,Phase 1 Current,A,Phase_1_Current,01,01032ax4UUuu@i0:1,Phase 2 Current,A,Phase_2_Current,01,01032ax6UUuu@i0:1,Phase 3 Current,A,Phase_3_Current,01,01032ax8SSss@i0:1,Curr Scale Fctr,SF,Curr_SF,01,01032ax16UUuu@i0:1,Phase 1 Voltage,A,Phase_1_Voltage,01,01032ax18UUuu@i0:1,Phase 2 Voltage,A,Phase_2_Voltage,01,01032ax20UUuu@i0:1,Phase 3 Voltage,A,Phase_3_Voltage,01,01032ax22SSss@i0:1,Vltg Scale Fctr,SF,Vltg_SF,01,01032ax24UUuu@i0:1,Output Power,W,Output_Power,01,01032ax26SSss@i0:1,Pwr Scale Fctr,SF,Pwr_SF,01,01032ax28UUuu@i0:1,Frequency,Hz,Frequency,01,01032ax30SSss@i0:1,Freq Scale Fctr,SF,Freq_SF,01,01032ax36UUuu@i0:1,Temperature,C,Temperature,01,01032ax38SSss@i0:1,Temp Scale Fctr,SF,Temp_SF,0+2,[192.168.3.23],m,0,502,mod2,1,10,r01039C8700152,=so3,1282,01032aUUuu@i0:1,AC Current,A,AC_Current,02,01032ax2UUuu@i0:1,Phase 1 Current,A,Phase_1_Current,02,01032ax4UUuu@i0:1,Phase 2 Current,A,Phase_2_Current,02,01032ax6UUuu@i0:1,Phase 3 Current,A,Phase_3_Current,02,01032ax8SSss@i0:1,Curr Scale Fctr,SF,Curr_SF,02,01032ax16UUuu@i0:1,Phase 1 Voltage,A,Phase_1_Voltage,02,01032ax18UUuu@i0:1,Phase 2 Voltage,A,Phase_2_Voltage,02,01032ax20UUuu@i0:1,Phase 3 Voltage,A,Phase_3_Voltage,02,01032ax22SSss@i0:1,Vltg Scale Fctr,SF,Vltg_SF,02,01032ax24UUuu@i0:1,Output Power,W,Output_Power,02,01032ax26SSss@i0:1,Pwr Scale Fctr,SF,Pwr_SF,02,01032ax28UUuu@i0:1,Frequency,Hz,Frequency,02,01032ax30SSss@i0:1,Freq Scale Fctr,SF,Freq_SF,02,01032ax36UUuu@i0:1,Temperature,C,Temperature,02,01032ax38SSss@i0:1,Temp Scale Fctr,SF,Temp_SF,0#

Use this script when the inverter is configured to use Sunspec Model Type "float":

View script
>D>B->sensor53 r>M 1+1,[192.168.2.251],m,0,502,FRONIUS,0,100,r01039C8700201,=so3,801,010340ffffffff@i0:1,AC Current,A,11_7_0,31,010340x4ffffffff@i0:1,L1 Current,A,31_7_0,31,010340x8ffffffff@i0:1,L2 Current,A,51_7_0,31,010340x12ffffffff@i0:1,L3 Current,A,71_7_0,31,010340x28ffffffff@i0:1,L1 Voltage,V,32_7_0,21,010340x32ffffffff@i0:1,L2 Voltage,V,52_7_0,21,010340x36ffffffff@i0:1,L3 Voltage,V,72_7_0,21,010340x40ffffffff@i0:1000,Output Power,kW,2_7_0,31,010340x44ffffffff@i0:1,Frequency,Hz,14_7_0,31,010340x48ffffffff@i0:1000,Apparent Power,kVA,9_7_0,31,010340x52ffffffff@i0:1000,Reactive Power,kVAr,4_7_0,31,010340x56ffffffff@i0:1,Power Factor,,13_7_0,31,010340x60ffffffff@i0:1000,AC Lifetime En,kWh,2_8_0,3# 

Growatt MAX4200 (MODBus)~

Growatt solar inverter. this example also shows how to send cmds to modbus

View script
>D 22cstr=""gl=0tmp=0>B=>sensor53 r>Sif chg[gl]>0 { ; change limit tmp=int(gl/42) cstr="r0106000300"+hn(tmp) sml(1 3 cstr)}>M 1+1,18,m,0,9600,GRW,19,5,01040026,01040028,01040005,01040009,010300031,010404UUuu@i0:10,Netzspannung,V,mainsv,11,010404xxxxUUuu@i0:10,Einspeisestrom,A,mainsc,11,010404UUuuUUuu@i1:10,Einspeiseleistung,W,mainsw,11,010404UUuuUUuu@i2:10,string 1 unten,W,s1w,11,010404UUuuUUuu@i3:10,string 2 oben,W,s2w,11,010304UUuu@i4:1,limit,%,limit,0#>W<hr>nm(1000 3600 10 gl "Growatt limit (W) " 80 0) 

Hager EHZ161 / EHZ361 (OBIS)~

View script
>D>B->sensor53 r>M 1+1,3,o,0,9600,OBIS1,1-0:0.0.0*255(@#),Meter Number,,meter_number,01,1-0:1.8.0*255(@1,Power Consumption A+,kWh,zaehler_a+,41,1-0:2.8.0*255(@1,Power Feed A-,kWh,zaehler_a-,41,1-0:32.7.0*255(@1,Volt_L1,V,volt_l1,21,1-0:52.7.0*255(@1,Volt_L2,V,volt_l2,21,1-0:72.7.0*255(@1,Volt_L3,V,volt_l3,21,1-0:31.7.0*255(@1,Ampere_L1,A,volt_l1,21,1-0:51.7.0*255(@1,Ampere_L2,A,volt_l2,21,1-0:71.7.0*255(@1,Ampere_L3,A,volt_l3,21,1-0:21.7.0*255(@1,Watt_L1,W,watt_l1,01,1-0:41.7.0*255(@1,Watt_L2,W,watt_l2,01,1-0:61.7.0*255(@1,Watt_L3,W,watt_l3,0#

Hager EHZ363~

View script
>D>B->sensor53 r>M 1+1,3,s,0,9600,SML1,77070100010800ff@1000,Total consumption,kWh,Total_in,41,77070100020800ff@1000,Total Feed,kWh,Total_out,41,77070100100700ff@1,Current consumption,W,Power_curr,01,77070100200700ff@1,Voltage L1,V,Volt_p1,11,77070100340700ff@1,Voltage L2,V,Volt_p2,11,77070100480700ff@1,Voltage L3,V,Volt_p3,11,770701001f0700ff@1,Amperage L1,A,Amperage_p1,11,77070100330700ff@1,Amperage L2,A,Amperage_p2,11,77070100470700ff@1,Amperage L3,A,Amperage_p3,11,77070100510704ff@1,Phaseangle I-L1/U-L1,deg,phase_angle_p1,1 1,7707010051070fff@1,Phaseangle I-L27I-L2,deg,phase_angle_p2,1 1,7707010051071aff@1,Phaseangle I-L3/I-L3,deg,phase_angle_p3,1 1,770701000e0700ff@1,Frequency,Hz,frequency,0#
SML with daily values
>D pin=0 pout=0 pi_d=0 po_d=0 hr=0 ; permanent midnight values p:pi_m=0 p:po_m=0 >B ->sensor53 r >T ; get total consumption and total feed pin=SML#Total_in pout=SML#Total_out >S ; at midnight, save meter total values hr=hours if chg[hr]>0 and hr==0 then pi_m=pin po_m=pout svars endif ; on teleperiod calculate current daily values from midnight if upsecs%tper==0 then pi_d=pin-pi_m po_d=pout-po_m endif ; show these values on WEB UI >W Tagesverbrauch: {m} %pi_d% kWh Tageseinspeisung: {m} %po_d% kWh ; transmit these values with MQTT >J ,"daily_consumption":%pi_d%,"daily_feed":%po_d% ; meter definition >M 1 +1,3,s,0,9600,SML 1,77070100010800ff@1000,Total Consumed,kWh,Total_in,4 1,77070100020800ff@1000,Total Delivered,kWh,Total_out,4 1,77070100100700ff@1,Current Consumption,W,Power_curr,0 1,77070100000009ff@#,Meter Number,,Meter_number,0 #

Hiking DDS238-2 ZN/S3 4x (MODBus)~

This is an example for 4 MODBus devices on the same bus (at different addresses).

Wiring diagram

Smart Meter Interface - Tasmota (2)

View script
>D>B->sensor53 r>M 1+1,3,m,1,9600,Hiking,1,10,0103000c,0103000e,0303000c,0303000e,0403000c,0403000e,0503000c,0503000e;---> two groups of registers for each device --> default 2 registers returned ---> 4 values per device1,=h Contatore 11,010304UUuu@i0:10,C1_Voltage,V,C1Voltage,1;---> decoder for the first registry returned for the first group1,010304xxxxUUuu@i0:1000,C1_Current,A,C1Current,3;---> decoder for the second registry returned for the first group1,010304SSss@i1:1,C1_ActivePower,W,C1ActivePower,01,010304xxxxUUuu@i1:1,C1_ReactivePower,Var,C1ReactivePower,01,=h Contatore 31,030304UUuu@i2:10,C3_Voltage,V,C3Voltage,11,030304xxxxUUuu@i2:1000,C3_Current,A,C3Current,31,030304SSss@i3:1,C3_ActivePower,W,C3ActivePower,01,030304xxxxUUuu@i3:1,C3_ReactivePower,Var,C3ReactivePower,01,=h Contatore 41,040304UUuu@i4:10,C4_Voltage,V,C4Voltage,11,040304xxxxUUuu@i4:1000,C4_Current,A,C4Current,31,040304SSss@i5:1,C4_ActivePower,W,C4ActivePower,01,040304xxxxUUuu@i5:1,C4_ReactivePower,Var,C4ReactivePower,01,=h Contatore 51,050304UUuu@i6:10,C5_Voltage,V,C5Voltage,11,050304xxxxUUuu@i6:1000,C5_Current,A,C5Current,31,050304SSss@i7:1,C5_ActivePower,W,C5ActivePower,01,050304xxxxUUuu@i7:1,C5_ReactivePower,Var,C5ReactivePower,0#

Holley DTZ541 (SML)~

This script reads pretty much all given information. Make sure to enable info in the settings, otherwise you only get total / current consuption and total export.

This script was used and tested on a WeMos D1 mini with an IR Head connected to the RX pin (3).

View script
>D>B->sensor53 r>M 1+1,3,s,16,9600,SML1,77070100600100ff@#,Server ID,,server_id,01,77070100020800ff@1000,Export (Total),kWh,export_total_kwh,41,77070100010800ff@1000,Consumption (Total),kWh,total_kwh,41,77070100100700ff@1,Consumption (Current),W,curr_w,01,77070100200700ff@1,Voltage L1,V,volt_p1,11,77070100340700ff@1,Voltage L2,V,volt_p2,11,77070100480700ff@1,Voltage L3,V,volt_p3,11,770701001f0700ff@1,Amperage L1,A,amp_p1,11,77070100330700ff@1,Amperage L2,A,amp_p2,11,77070100470700ff@1,Amperage L3,A,amp_p3,11,77070100510701ff@1,Phase angle U-L2/U-L1,deg,phase_angle_l2_l1,11,77070100510702ff@1,Phase angle U-L3/U-L1,deg,phase_angle_l3_l1,11,77070100510704ff@1,Phase angle I-L1/U-L1,deg,phase_angle_p1,11,7707010051070fff@1,Phase angle I-L2/U-L2,deg,phase_angle_p2,11,7707010051071aff@1,Phase angle I-L3/U-L3,deg,phase_angle_p3,11,770701000e0700ff@1,Frequency,Hz,freq,0#

Holley DTZ541-ZDBA (SML)~

This meter differatiates between day and night time consumption. The script is based on the DTZ541. Look above for more information.

View script
>D>B->sensor53 r>M 1+1,3,s,16,9600,SML1,77070100600100ff@#,Server ID,,server_id,01,77070100020800ff@1000,Export (Total),kWh,export_total_kwh,41,77070100010802ff@1000,Night (Total),kWh,total_night_kwh,41,77070100010801ff@1000,Day (Total),kwH,total_day_kwh,41,77070100100700ff@1,Consumption (Current),W,curr_w,01,77070100200700ff@1,Voltage L1,V,volt_p1,11,77070100340700ff@1,Voltage L2,V,volt_p2,11,77070100480700ff@1,Voltage L3,V,volt_p3,11,770701001f0700ff@1,Amperage L1,A,amp_p1,11,77070100330700ff@1,Amperage L2,A,amp_p2,11,77070100470700ff@1,Amperage L3,A,amp_p3,11,77070100510701ff@1,Phase angle U-L2/U-L1,deg,phase_angle_l2_l1,11,77070100510702ff@1,Phase angle U-L3/U-L1,deg,phase_angle_l3_l1,11,77070100510704ff@1,Phase angle I-L1/U-L1,deg,phase_angle_p1,11,7707010051070fff@1,Phase angle I-L2/U-L2,deg,phase_angle_p2,11,7707010051071aff@1,Phase angle I-L3/U-L3,deg,phase_angle_p3,11,770701000e0700ff@1,Frequency,Hz,freq,0#

Holley EHZ541-BE (SML)~

This Meter is sending negative values similiar to the DTZ541 model, you have to use the special option 1 (so1) as described in the 'special commands' section. Make sure to acquire the PIN from your energyprovider.

After unlocking the meter, you can run the following script

View script
>D>B->sensor53 r>M 1+1,3,s,16,9600,SML1,77070100600100ff@#,Server ID,,server_id,01,77070100010800ff@1000,Consumption (Total),kWh,total_kwh,41,=so1,00010800,65,11,65,11,001007001,77070100100700ff@1,Consumption (Current),W,curr_w,0#

Huawei SUN2000-10KTL (MODBus)~

For writing 32-bit registers like 40126, use ModBus Bridge driver and send two 16-bit numbers. i.e. modbussend {"deviceaddress": 1, "functioncode": 16, "startaddress":40126, "type":"int16", "count":2, "values":["0","6666"]}

View script
>D>B->sensor53 r>M 1+1,3,m,0,9600,modbus,1,10,r01037D100004,01037D00,01037D08,01037D40,r01037D450003,r01037D48000A,01037D55,01037D57,01037D59,01037D6A,01037D721,010308SSss@i0:10,PV1 Voltage,V,PV1_Voltage,11,010308x2SSss@i0:100,PV1 Current,A,PV1_Current,21,010308x4SSss@i0:10,PV2 Voltage,V,PV2_Voltage,11,010308x6SSss@i0:100,PV2 Current,A,PV2_Current,21,010304UUuu@i1:1,State Code,SC,State_Code,01,010304UUuuUUuu@i2:1,Error Code,EC,Error_Code,01,010304SSssSSss@i3:1,Input Power,W,Input_Power,01,010306UUuu@i4:10,Phase 1 Voltage,V,Phase_1_Voltage,11,010306x2UUuu@i4:10,Phase 2 Voltage,V,Phase_2_Voltage,11,010306x4UUuu@i4:10,Phase 3 Voltage,V,Phase_3_Voltage,11,010314SSssSSss@i5:1000,Phase 1 Current,A,Phase_1_Current,21,010314x4SSssSSss@i5:1000,Phase 2 Current,A,Phase_2_Current,21,010314x8SSssSSss@i5:1000,Phase 3 Current,A,Phase_3_Current,21,010314x16SSssSSss@i5:1,Active Power,W,Active_Power,01,010304UUuu@i6:100,Frequency,Hz,Frequency,21,010304SSss@i7:10,Internal Temperature,c,Internal_Temperature,11,010304UUuu@i8:1,Status Code,SC,Status_Code,01,010304UUuuUUuu@i9:100,Total Yield,TY,Total_Yield,21,010304UUuuUUuu@i10:100,Daily Yield,DY,Daily_Yield,2#

inepro PRO380-Mod (MODBus)~

View script
>D>B=>sensor53 r>M 1 +1,3,M,0,9600,MODBUS,1,1,01035002,01035004,01035006,01035008,0103500C,0103500E,01035010,01035012,01035014,01035016,01035018,0103501A,0103501C,0103501E,01035020,01035022,01035024,01035026,01035028,0103502A,0103502C,0103502E,01035030,0103600C,01036018,01036030,0103603C; ***************************************; * inepro PRO380-Mod Energy Meter *; ***************************************; Serial: 9600; Device parity: EVEN; Slave address: 0x01; ***************************************1,010304ffffffff@i0:1,L1 Voltage,V,32_7_0,31,010304ffffffff@i1:1,L2 Voltage,V,52_7_0,31,010304ffffffff@i2:1,L3 Voltage,V,72_7_0,31,010304ffffffff@i3:1,Grid frequency,Hz,14_7_0,31,010304ffffffff@i4:1,L1 Current,A,31_7_0,31,010304ffffffff@i5:1,L2 Current,A,51_7_0,31,010304ffffffff@i6:1,L3 Current,A,71_7_0,31,010304ffffffff@i7:1,Tot act power,kW,1_7_0,31,010304ffffffff@i8:1,L1 Act power,kW,21_7_0,31,010304ffffffff@i9:1,L2 Act power,kW,41_7_0,31,010304ffffffff@i10:1,L3 Act power,kW,61_7_0,31,010304ffffffff@i11:1,Tot react power,kvar,3_7_0,31,010304ffffffff@i12:1,L1 react power,kvar,23_7_0,31,010304ffffffff@i13:1,L2 react power,kvar,43_7_0,31,010304ffffffff@i14:1,L3 react power,kvar,63_7_0,31,010304ffffffff@i15:1,Tot appar power,kVA,9_7_0,31,010304ffffffff@i16:1,L1 appar power,kVA,29_7_0,31,010304ffffffff@i17:1,L2 appar Power,kVA,49_7_0,31,010304ffffffff@i18:1,L3 appar Power,kVA,69_7_0,31,010304ffffffff@i19:1,Power factor,,13_7_0,31,010304ffffffff@i20:1,L1 Power factor,,33_7_0,31,010304ffffffff@i21:1,L2 Power factor,,53_7_0,31,010304ffffffff@i22:1,L3 Power factor,,73_7_0,31,010304ffffffff@i23:1,Forw act en,kWh,1_8_0,31,010304ffffffff@i24:1,Rev act en,kWh,2_8_0,31,010304ffffffff@i25:1,Forw react en,kvarh,3_8_0,31,010304ffffffff@i26:1,Rev react en,kvarh,4_8_0,3#

Iskra MT 174 (OBIS)~

View script
>D>B->sensor53 r>M 1+1,3,o,0,300,STROM,1,100,2F3F210D0A1,1-0:1.8.1*255(@1,Total Consumed,kWh,Total_in,31,1-0:2.8.1*255(@1,Total Delivered,kWh,Total_out,31,1-0:0.0.0*255(@#),Meter Number,,Meter_number,0#

Iskra MT 175 (SML)~

This meter needs a PIN to unlock the current power usage. You need to ask your provider.

View script
>D>B->sensor53 r>M 1+1,3,s,16,9600,MT1751,77070100010800ff@1000,E_in,kWh,E_in,11,77070100020800ff@1000,E_out,kWh,E_out,11,77070100100700ff@1,P,W,P,181,77070100240700ff@1,L1,W,L1,181,77070100380700ff@1,L2,W,L2,181,770701004C0700ff@1,L3,W,L3,181,77070100000009ff@#,Server_ID,,Server_ID,0#

Iskra MT 631 (SML)~

This meter needs a PIN to unlock the current power usage. You need to ask your provider. Total Delivered might be zero on some devices

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,MT6311,77070100010800ff@1000,Total Consumed,kWh,Total_in,21,77070100020800ff@1000,Total Delivered,kWh,Total_out,21,77070100100700ff@1,Current Consumption,W,Power_cur,0#

Iskra MT 681 (SML)~

This is script for a two-direction meter (consumption and delivery) for the Isra MT 681, that is widely used in Germany. If you don't deliver energy, just delete the "Total Delivered" line. If the meter provides the consumption values for the 3 phases depends also on the configuration by your local energy provider.

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,MT6811,77070100010800ff@1000,Total Consumed,kWh,Total_in,31,77070100100700ff@1,Current Consumption,W,Power_cur,01,77070100240700ff@1,Current Consumption P1,W,Power_p1,01,77070100380700ff@1,Current Consumption P2,W,Power_p2,01,770701004c0700ff@1,Current Consumption P3,W,Power_p3,01,77070100020800ff@1000,Total Delivered,kWh,Total_out,31,77070100000009ff@#,Service ID,,Meter_id,0#

Iskra eHZ-MT681-D4A51-K0p~

2012 version of the Iskra MT 681 with slightly other OBIS codes for the power values.

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,MT6811,77070100010800ff@1000,Gesamtverbrauch,kWh,Total_in,31,770701000f0700ff@1,Leistung,W,Power_cur,01,77070100150700ff@1,Leistung P1,W,Power_p1,01,77070100290700ff@1,Leistung P2,W,Power_p2,01,770701003d0700ff@1,Leistung P3,W,Power_p3,01,77070100020800ff@1000,Gesamteinspeisung,kWh,Total_out,31,77070100000009ff@#,Service ID,,Meter_id,0#

Iskra eHZ-MT681-D4A52-K0p~

2023 Version Zweiwegezähler

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,MT6811,77070100010800ff@1000,Verbrauch,kWh,Total_in,41,77070100100700ff@1,Leistung,W,Power_cur,01,77070100020800ff@1000,Erzeugung,kWh,Total_out,41,77070100000009ff@#,Service ID,,Meter_id,0#

Itron (SML V1.04)~

The Itron electrical meter is a German end-user meter installed by EnBW. You can read values using an IR Sensor. The following script shows the meter number and the consuption and the generation of a Photovoltaik generator.

View script
>D>B=>sensor53 r>M 1+1,12,s,0,9600,ELZ1,77070100600100ff@#,Zählernummer,,Wert,01,77070100010800ff@1000,Verbrauch,kWh,ELZ_PV_1.8.0,11,77070100020800ff@1000,Erzeugung,kWh,ELZ_PV_2.8.0,1#
This script additionally reads the power in watts

It has enhanced precision of 4 decimal places for the total consumption. Be sure to turn on the full precision at the meter using a flashlight (if you see inF=Off, hold for 5 seconds until you see inF=On)

>D>B=>sensor53 r;Set teleperiod to 20sec tper=10 >M 1+1,3,s,0,9600,Power1,77070100600100ff@#,Zählernummer,,Meter_Number,01,77070100010800ff@1000,Verbrauch,kWh,Total_in,41,77070100100700ff@1,Leistung,W,Power_curr,01,77070100020800ff@1000,Erzeugung,kWh,Total_out,4#

Janitza B23 (MODBus)~

View script
>D>B ->sensor53 r>M 1 +1,3,m,0,9600,Janitza,1,1,01034A38,01034A3A,01034A3C,01034A4C,01034A4E,01034A50,01034A72,01034A7A,01034A82 1,010304ffffffff@i0:1,Voltage L1-N,V,Voltage_L1-N,2 1,010304ffffffff@i1:1,Voltage L2-N,V,Voltage_L2-N,2 1,010304ffffffff@i2:1,Voltage L3-N,V,Voltage_L3-N,2 1,010304ffffffff@i3:1,Real power L1-N,W,Real_power_L1-N,2 1,010304ffffffff@i4:1,Real power L2-N,W,Real_power_L2-N,2 1,010304ffffffff@i5:1,Real power L3-N,W,Real_power_L3-N,2 1,010304ffffffff@i6:1,Real energy L3,Wh,Real_energy_L3,2 1,010304ffffffff@i7:1,Real energy L3-consumed,Wh,Real_energy_L3_consumed,2 1,010304ffffffff@i8:1,Real energy L3-delivered,Wh,Real_energy_L3_delivered,2 #

JANZ C3801 (MODBus)~

This is an example for one of the many quite similar smart meters implemented in Portugal, by EDP Distribuição S.A. May be valid for many more models, as stated.

View script
>D>B=>sensor53 r>M 1+1,14,m,1,9600,EB,5,50,0104006C,01040079,0104007A,0104007F,01040026,01040027,01040028,0104000B,010400841,=hVALORES TÉCNICOS1,010404UUuuxxxx@i0:10,Tensão,V,Voltage_P1,171,010404xxxxUUuu@i0:10,Corrente,A,Current_P1,171,010408UUuuUUuuxxxxxxxxxxxx@i1:1,Potência ativa,W,Power_P1,161,010406xxxxxxxxUUuu@i2:1000,Fator de potência,pu,PFactor_P1,191,01040aUUuuxxxx@i3:10,Frequência,Hz,Frequency_P1,171,=h&#8205;1,=hTOTALIZADORES DE ENERGIA1,010408UUuuUUuuxxxxxxxxxxxx@i4:1000,Vazio (1),kWh,Energy_P1_R1,171,010408UUuuUUuuxxxxxxxxxxxx@i5:1000,Ponta (2),kWh,Energy_P1_R2,171,010408UUuuUUuuxxxxxxxxxxxx@i6:1000,Cheia (3),kWh,Energy_P1_R3,171,=h&#8205;1,=hESTADOS1,010406uuxxxxxxxx@i7:1,Tarifa,,Tariff_P1,161,010406uuxxxxxxxx@i8:1,DCP,,DCP_P1,16#

KAIFA MB310H4BDE~

By default, the KAIFA MB310H4BDE will only deliver the Total_in and Total_out values (without decimals). In order to get precise values, and especially in order to receive Power_curr, you have to login to configure it: Press the button besides the display. When asked for pin, enter it with a flashlight or by pressing the same button repeatedly. (If you don't have a PIN, get it from your grid operator.) If that was successful, you will see accurate values in the meters display already. To activate them on the SML interface, press the button repeatedly for 13 times, until "INF OFF" is displayed. Now press and hold the button, until it switches to INF ON. After that, you should receive all values.

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,Haus1,77070100010800ff@1000,Zaehlerstand In,kWh,Total_in,21,77070100020800ff@1000,Zaehlerstand Out,kWh,Total_out,21,77070100100700ff@1,Leistung-akt.,W,Power_curr,01,77070100600100ff@#,Server-ID,,Meter_Number,0#

Kamstrup 382Lx7~

View script
>D>B=>sensor53 r>S>M 1+1,5,k,0,9600,K382Lx7,4,10,3F100200010002,3F1003041E041F0420,3F1003043404350436,3F100203ff0400,1,3F100001kstr@i0:1,EnergyIn,kWh,EnergyIn,161,3F10x08xx0002kstr@i0:1,EnergyOut,kWh,EnergyOut,161,3F10041ekstr@i1:1,VoltageP1,V,VoltageP1,161,3F10x06xx041fkstr@i1:1,VoltageP2,V,VoltageP2,161,3F10x13xx0420kstr@i1:1,VoltageP3,V,VoltageP3,161,3F100434kstr@i2:100,CurrentP1,A,CurrentP1,181,3F10x08xx0435kstr@i2:100,CurrentP2,A,CurrentP2,181,3F10x17xx0436kstr@i2:100,CurrentP3,A,CurrentP2,181,3F1003ffkstr@i3:1,PowerIN,W,PowerIN,161,3F10x08xx0400kstr@i3:1,PowerOUT,W,PowerOUT,16#

Kamstrup Multical 4xx / 6xx / 8xx~

Those meters provide several registers via optical interface called D0 interface. Baudrate is only 1200 thus reading multiple registers simultaneously takes some time (e.g. one: ~300ms, six ~750ms). Size of response varies depending on register type and needs to be considered when reading more than one with a single telegram. Analyze length with sensor53 d1. Responses have format of 3F10<rg><response><rg><response>. So asking for 0x003C and 0x0056 with telegram 3F10 02 003C 0056 could be responded with 3F10 003C xxXXxxXXxxXXxx 0056 xxXXxxXXxx.

Default buffer size suffices for four values at once. The following example reads seven values at once so please #define SML_BSIZ 90. SML allows only one date value per meter at the moment.

View script (seven at once, needs #define SML_BSIZ 90)
>D>B=>sensor53 r>M 1+1,3,kN2,0,1200,KSMC403,1,10,3F1007003C005600570059004A0044007B1,3F10003Ckstr@i0:1000,Wärmemenge,MWh,HeatEnergyE1,31,3F10x08xx0056kstr@i0:100,Vorlauftemp.,°C,PreTemp,21,3F10x15xx0057kstr@i0:100,Rücklauftemp.,°C,AftTemp,21,3F10x22xx0059kstr@i0:100,Temp.diff.,°C,DifTemp,21,3F10x29xx004Akstr@i0:1,Fließgeschw.,l/h,Flow,01,3F10x36xx0044kstr@i0:100,Volumenstrom,m³,Volume,21,3F10x45xx007Bkstr@#,max. Fluss am,,MaxFlowDate,0#
View script (same as above with two telegrams and default SML_BSIZ)
>D>B=>sensor53 r>M 1+1,3,kN2,0,1200,KSMC403,1,5,3F1004003C005600570059,3F1003004A0044007B1,3F10003Ckstr@i0:1000,Wärmemenge,MWh,HeatEnergyE1,31,3F10x08xx0056kstr@i0:100,Vorlauftemp.,°C,PreTemp,21,3F10x15xx0057kstr@i0:100,Rücklauftemp.,°C,AftTemp,21,3F10x22xx0059kstr@i0:100,Temp.diff.,°C,DifTemp,21,3F10004Akstr@i1:1,Fließgeschw.,l/h,Flow,01,3F10x06xx0044kstr@i1:100,Volumenstrom,m³,Volume,21,3F10x15xx007Bkstr@#,max. Fluss am,,MaxFlowDate,0#

Landis + Gyr E220 (SML)~

For read-out of "current power" the advanced data set has to be enabled in user menu

View script
>D>B=>sensor53 r;Set teleperiod to 20sec tper=10 >M 1+1,3,s,0,9600,Power1,77070100600100ff@#,Server-ID,,Meter_Number,01,77070100010800ff@1000,Verbrauch,kWh,Total_in,41,77070100100700ff@1,Leistung-akt.,W,Power_curr,0#

Landis + Gyr E320 (SML)~

For read-out of "Current power" the advanced data set has to be enabled in user menu

View script
>D>B=>sensor53 r>M 1+1,3,s,20,9600,E3201,77070100020800ff@1000,Total Delivered,kWh,Total_out,31,77070100010800ff@1000,Total Consumed,kWh,Total_in,31,77070100100700ff@1,Current power,W,Power_in,31,77070100600100ff@#,Server-ID,,Meter_Number,0 #

Landis + Gyr E350 (OBIS)~

Requesting data with a baud rate change during operation.

According to its manual the meter seems to support many more metrics that were not tested, and are not listed here because of that.

View script
>Dscnt=0res=0>B->sensor53 rtper=20>Fscnt+=1switch scntcase 6res=sml(1 0 300)res=sml(1 1 "2F3F210D0A")case 18res=sml(1 1 "063035300D0A")case 20res=sml(1 0 9600)case 50scnt=0ends>M 1+1,3,o,0,9600,,1;1,C.1.0(@1,Server-ID,,Meter_number,01,=h===================1,1.8.0(@1,Total Consumed,kWh,Total_in,3;1,1.8.1(@1,Primary Consumed,kWh,P_Total_in,3;1,1.8.2(@1,Secondary Consumed,kWh,S_Total_in,31,=h===================1,16.7(@1,Current power,kW,Power_in,2#

Landis + Gyr ZMB120 T213CS (OBIS)~

This meter may need a PIN to unlock the current power usage - ask your provider.

View script
>D>B=>sensor53 r>M 1+1,3,o,0,300,STROM,1,10,2F3F210D0A,063030300D0A1,0(@1,Zählernummer,,Meter_number,0 1,=h=================== 1,8.0(@1,Total T1 & T2,kWh,Total,2 1,8.1(@1,T1 aktuell,kWh,Total_T1,2 1,8.2(@1,T2 aktuell,kWh,Total_T2,2 1,=h=================== 1,8.1.1(@1,T1 letzte Saison,kWh,Total_T1-1,2 1,8.2.1(@1,T2 letzte Saison,kWh,Total_T2-1,2 1,8.1.2(@1,T1 vorletzte Saison,kWh,Total_T1-2,21,8.2.2(@1,T2 vorletzte Saison,kWh,Total_T2-2,2 #

Landis + Gyr ZMR120AReS2R2sfCS (OBIS)~

Example: Changing the baud rate during operation.

View script
>D ;Var Power consumption total HT+NT v1=0 ;HT Main electricity tariff consumption total v2=0 ;NT Night electricity tariff consumption total v3=0 ; Energie L1+L2+L3 v4=0 ;recent Energie L1 v5=0 ;recent Energie L2 v6=0 ;recent Energie L3 v7=0 ;Var minute min=0 ;Var hour hr=0 ;Var begin of the month 01.xx.20xx 0:00 Uhr md=0 ;Var begin of the year 01.01. 0:00 Uhr yr=0 ;Var for counter see >F=ms scnt=0 ;Var for baudrate changingres=0 ;Permanent Var Meter1 0:00 p:sm=0 p:HT_sm=0 p:NT_sm=0 ;Var for daily =0 sd=0 HT_sd=0 NT_sd=0 ;Permanent Var for month begin p:sma=0 p:HT_sma=0 p:NT_sma=0 ;Var for monthly =0 smn=0 HT_smn=0 NT_smn=0 ;Permanent Var for year begin p:sya=0 p:HT_sya=0 p:NT_sya=0 ;Var for yearly =0 syn=0 HT_syn=0 NT_syn=0 ;Fill vars with content on teleperiod >T v1=#Total_in v2=#HT_Total_in v3=#NT_Total_in v4=#kW_L1+L2+L3 v5=#kw_L1 v6=#kw_L2 v7=#kw_L3 >B ;Restart driver ->sensor53 r ;Set teleperiod to 20sec tper=20 >F ; count 100ms scnt+=1 switch scnt case 6 ;set sml driver to 300 baud and send /?! as HEX to trigger the Meter res=sml(1 0 300) res=sml(1 1 "2F3F210D0A") ;1800ms later \> Ack and ask for switching to 9600 baud case 18 res=sml(1 1 "063035300D0A") ;2000ms later \> Switching sml driver to 9600 baud case 20 res=sml(1 0 9600) ;Restart sequence after 50x100ms case 50 ; 5000ms later \> restart sequence scnt=0 ends >S ;daily usage hr=hours if chg[hr]>0 and hr==0 and v1>0 then sm=v1 HT_sm=v2 NT_sm=v3 svars endif if upsecs%tper==0{ sd=v1-sm HT_sd=v2-HT_sm NT_sd=v3-NT_sm } ;Monthly usage md=day if chg[md]>0 and md==1 and v1>0 then sma=v1 HT_sma=v2 NT_sma=v3 svars endif if upsecs%tper==0{ smn=v1-sma HT_smn=v2-HT_sma NT_smn=v3-NT_sma } ;Yearly usage yr=year if chg[yr]>0 and v1>0 then sya=v1 HT_sya=v2 NT_sya=v3 svars endif if upsecs%tper==0{ syn=v1-sya HT_syn=v2-HT_sya NT_syn=v3-NT_sya ; Json payload \> send on teleperiod >J ,"Strom_Vb_Tag":%3sd% ,"HT_Strom_Vb_Tag":%3HT_sd% ,"NT_Strom_Vb_Tag":%3NT_sd% ,"Strom_Vb_M":%1smn% ,"HT_Strom_Vb_M":%1HT_smn% ,"NT_Strom_Vb_M":%1NT_smn% ,"Strom_Vb_Jahr":%0syn% ,"HT_Strom_Vb_Jahr":%0HT_syn% ,"NT_Strom_Vb_Jahr":%0NT_syn% ,"Strom_0:00 _Uhr":%1sm% ,"HT_Strom_0:00 _Uhr":%1HT_sm% ,"NT_Strom_0:00 _Uhr":%1NT_sm% ,"Strom_Ma":%3sma% ,"HT_Strom_Ma":%3HT_sma% ,"NT_Strom_Ma":%3NT_sma% ,"Strom_Ja":%3sya% ,"HT_Strom_Ja":%3HT_sya% ,"NT_Strom_Ja":%3NT_sya% ;Webdisplay stuff >W 0:00 Uhr Σ HT+NT: {m} %0sm% kWh HT: {m} %0HT_sm% kWh NT: {m} %0NT_sm% kWh Monatsanfang: {m} %1sma% kWh HT: {m} %1HT_sma% kWh NT: {m} %1NT_sma% kWh Jahresanfang: {m} %0sya% kWh HT: {m} %0HT_sya% kWh NT: {m} %0NT_sya% kWh ............................. Tagesverbrauch: {m} %1sd% kWh HT: {m} %1HT_sd% kWh NT: {m} %1NT_sd% kWh Monatsverbrauch: {m} %0smn% kWh HT: {m} %0HT_smn% kWh NT: {m} %0NT_smn% kWh - Jahresverbrauch: {m} %0syn% kWh HT: {m} %0HT_syn% kWh 0:00 Uhr Σ HT+NT: {m} %0sm% kWh HT: {m} %0HT_sm% kWh NT: {m} %0NT_sm% kWh Monatsanfang: {m} %1sma% kWh HT: {m} %1HT_sma% kWh NT: {m} %1NT_sma% kWh Jahresanfang: {m} %0sya% kWh HT: {m} %0HT_sya% kWh NT: {m} %0NT_sya% kWh ............................. Tagesverbrauch: {m} %1sd% kWh HT: {m} %1HT_sd% kWh NT: {m} %1NT_sd% kWh Monatsverbrauch: {m} %0smn% kWh HT: {m} %0HT_smn% kWh NT: {m} %0NT_smn% kWh - Jahresverbrauch: {m} %0syn% kWh HT: {m} %0HT_syn% kWh NT: {m} %0NT_syn% kWh >M 1 +1,3,o,0,9600,,1 1,0.0.1(@1,Zählernummer,,Meter_number,0 1,0.9.1(@#),Zeitstempel,Uhr,time-stamp,0 1,=h=================== 1,1.8.0(@1,HT+NT Zählerstand,kWh,Total_in,3 1,1.8.1(@1,HT,kWh,HT_Total_in,3 1,1.8.2(@1,NT,kWh,NT_Total_in,3 1,=h=================== 1,36.7.0(@1,Power_L1,kW,kW_L1,2 1,56.7.0(@1,Power_L2,kW,kW_L2,2 1,76.7.0(@1,Power_L3,kW,kW_L3,2 1,16.7.0(@1,Σ_L1+L2+L3,kW,kW_L1+L2+L3,2 1,=h=================== 1,31.7.0(@1,Strom_L1,A,I_L1,2 1,51.7.0(@1,Strom_L2,A,I_L2,2 1,71.7.0(@1,Strom_L3,A,I_L3,2 #

2 * Landis+Gyr E450 (encrypted)~

View script
>D>Bsmlj=0=>sensor53 r>Rsmlj=0>Sif upsecs>22thensmlj|=1endif>M 2+1,17,r,0,2400,Heizung1,=so3,5121,=so4,GUEK1,pm(1.8.0)@1000,kWh_IN,kWh,kWh_IN,3;Wirkenergie Lieferung (+A)1,pm(1.8.1)@1000,kWh_IN_T1,kWh,kWh_IN_T1,3;Wirkenergie Lieferung (+A) Tarif 11,pm(1.8.2)@1000,kWh_IN_T2,kWh,kWh_IN_T2,3;Wirkenergie Lieferung (+A) Tarif 21,pm(1.7.0)@1000,kW_IN,kW,kW_IN,3;Momentane Wirkleistung Lieferung (+A);1,pm(2.8.0)@1000,kWh_OUT,kWh,kWh_OUT,3;Wirkenergie Bezug (-A);1,pm(2.8.1)@1000,kWh_OUT_T1,kWh,kWh_OUT_T1,3;Wirkenergie Bezug (-A) Tarif 1;1,pm(2.8.2)@1000,kWh_OUT_T2,kWh,kWh_OUT_T2,3;Wirkenergie Bezug (-A) Tarif 2;1,pm(.2.7.0)@1000,kW_OUT,kW,kW_OUT,3;Momentane Wirkleistung Bezug (-A)1,pm(3.8.0)@1000,kvarh_IN,kvarh,kvarh_IN,3;Blindenergie Lieferung (+R)1,pm(.3.8.1)@1000,kvarh_IN_T1,kvarh,kvarh_IN_T1,3;Blindenergie Lieferung (+R) Tarif 11,pm(.3.8.2)@1000,kvarh_IN_T2,kvarh,kvarh_IN_T2,3;Blindenergie Lieferung (+R) Tarif 21,pm(.3.7.0)@1000,kvar_IN,kvar,kvar_IN,3;Momentane Blindleistung Lieferung (+R)1,pm(4.8.0)@1000,kvarh_OUT,kvarh,kvarh_OUT,3;Blindenergie Bezug (-R)1,pm(.4.8.1)@1000,kvarh_OUT_T1,kvarh,kvarh_OUT_T1,3;Blindenergie Bezug (-R) Tarif 11,pm(.4.8.2)@1000,kvarh_OUT_T2,kvarh,kvarh_OUT_T2,3;Blindenergie Bezug (-R) Tarif 21,pm(.4.7.0)@1000,kvar_OUT,kvar,kvar_OUT,3;Momentane Blindleistung Bezug (-R)+2,16,r,0,2400,Haus2,=so3,5122,=so4,GUEK2,pm(1.8.0)@1000,kWh_IN,kWh,kWh_IN,3;Wirkenergie Lieferung (+A)2,pm(1.8.1)@1000,kWh_IN_T1,kWh,kWh_IN_T1,3;Wirkenergie Lieferung (+A) Tarif 12,pm(1.8.2)@1000,kWh_IN_T2,kWh,kWh_IN_T2,3;Wirkenergie Lieferung (+A) Tarif 22,pm(1.7.0)@1000,kW_IN,kW,kW_IN,3;Momentane Wirkleistung Lieferung (+A);2,pm(2.8.0)@1000,kWh_OUT,kWh,kWh_OUT,3;Wirkenergie Bezug (-A);2,pm(2.8.1)@1000,kWh_OUT_T1,kWh,kWh_OUT_T1,3;Wirkenergie Bezug (-A) Tarif 1;2,pm(2.8.2)@1000,kWh_OUT_T2,kWh,kWh_OUT_T2,3;Wirkenergie Bezug (-A) Tarif 2;2,pm(2.7.0)@1000,kW_OUT,kW,kW_OUT,3;Momentane Wirkleistung Bezug (-A)2,pm(.3.8.0)@1000,kvarh_IN,kvarh,kvarh_IN,3;Blindenergie Lieferung (+R)2,pm(3.8.1)@1000,kvarh_IN_T1,kvarh,kvarh_IN_T1,3;Blindenergie Lieferung (+R) Tarif 12,pm(3.8.2)@1000,kvarh_IN_T2,kvarh,kvarh_IN_T2,3;Blindenergie Lieferung (+R) Tarif 22,pm(3.7.0)@1000,kvar_IN,kvar,kvar_IN,3;Momentane Blindleistung Lieferung (+R)2,pm(4.8.0)@1000,kvarh_OUT,kvarh,kvarh_OUT,3;Blindenergie Bezug (-R)2,pm(4.8.1)@1000,kvarh_OUT_T1,kvarh,kvarh_OUT_T1,3;Blindenergie Bezug (-R) Tarif 12,pm(4.8.2)@1000,kvarh_OUT_T2,kvarh,kvarh_OUT_T2,3;Blindenergie Bezug (-R) Tarif 22,pm(4.7.0)@1000,kvar_OUT,kvar,kvar_OUT,3;Momentane Blindleistung Bezug (-R)#

Landis+Gyr E650 (OBIS)~

The script switches to a higher baud rate as the data set is pretty big and takes minutes to complete at 300 baud. The usable speed for my setup/hardware was 4800 baud.

The script requires tasmota version 12+ so it supports variables.

Switching to different baud rates requires changing the ack sequence 06303x300D0A, the baud rate in 2 places 4800->x and the case 200 (20x100ms) so the cycle can complete before restarting.

View script
>D; Script needs v12+res=0scnt=0>F;F section is executed every 100msscnt+=1switch scntcase 6;set sml driver to 300 baud and send /?! as HEX to trigger the Meterres=sml(1 0 300)res=sml(1 1 "2F3F210D0A");1800ms later \> Send ACK and ask for switching to 4800 baudcase 18res=sml(1 1 "063034300D0A")res=sml(1 0 4800)case 200; 20s later \> restart sequencescnt=0ends >M 1+1,3,o,0,4800,data,11,1-1:1.8.0(@1,energy_import,kWh,1-8-0,11,1-1:2.8.0(@1,energy_export,kWh,2-8-0,11,1-1:36.7.0(@1,power_L1,kWh,36-7-0,21,1-1:56.7.0(@1,power_L2,kWh,56-7-0,21,1-1:76.7.0(@1,power_L3,kWh,76-7-0,21,1-1:31.7.0(@1,current_L1,A,31-7-0,21,1-1:51.7.0(@1,current_L2,A,51-7-0,21,1-1:71.7.0(@1,current_L3,A,71-7-0,21,1-1:16.7.0(@1,power_total,W,16-7-0,2#

Logarex LK11BL (OBIS)~

This script keeps optical communication on the initial 300 baud speed and reject to switch any other speed smart meter requests.In my case, smart meter wanted to switch to 9600 baud but I felt it is better to follow the 'keep it simple' principle at the script's level and use 300 baud through the whole communication.If you know the meaning of the below unnamed OBIS codes please update the script.
View script
>D>B=>sensor53 r>M 1+1,3,o,0,300,zm,1,100,2F3F210D0A,060000D0A1,15.8.0(@1,total,kWh,total,31,0.0.0(@1,serial,,serial,01,F.F(@1,F.F,,F.F,01,C.8.0(@1,C.8.0,,C.8.0,01,0.2.0(@#),ver,,ver,31,0.3.0(@1,0.3.0,imp/kWh,0.3.0,01,.8.1(@1,.8.1,,.8.1,01,C.7.1(@1,C.7.1,,C.7.1,01,C.2.1(@1,C.2.1,,C.2.1,01,C.2.9(@1,C.2.9,,C.2.9,0#

Logarex LK13BE (OBIS)~

View script
>D>B=>sensor53 r>M 1+1,3,o,0,9600,LK13BE,13,30,2F3F210D0A,063035310D0A1,1-0:1.8.0*255(@1,Gesamtverbrauch,kWh,total,41,1-0:1.8.0*96(@1,Verbrauch 1 Tag,kWh,total_1d,41,1-0:1.8.0*97(@1,Verbrauch 7 Tage,kWh,total_7d,41,1-0:1.8.0*98(@1,Verbrauch 30 Tage,kWh,total_30d,41,1-0:1.8.0*99(@1,Verbrauch 365 Tage,kWh,total_365d,41,1-0:16.7.0*255(@1,Verbrauch aktuell,W,power,20#

Logarex LK13BE803039~

The Logarex LK13BE803039 does publish the data automatically. Do not poll this can lead to missreadings

View script
>D>B=>sensor53 r>M 1+1,3,o,0,9600,LK13BE1,1-0:1.8.0*255(@1,Gesamtverbrauch,kWh,total,41,1-0:1.8.0*96(@1,Verbrauch 1 Tag,kWh,total_1d,41,1-0:1.8.0*97(@1,Verbrauch 7 Tage,kWh,total_7d,41,1-0:1.8.0*98(@1,Verbrauch 30 Tage,kWh,total_30d,41,1-0:1.8.0*99(@1,Verbrauch 365 Tage,kWh,total_365d,41,1-0:16.7.0*255(@1,Verbrauch aktuell,W,current,201,1-0:2.8.0*255(@1,Gesamteinspeisung,kWh,total_out,4#

Logarex LK13BE803319 (OBIS)~

setupline for the HichiIR WiFi module (GPIO1: send, GPIO3: receive)

View script
>D>B=>sensor53 r>M 1; setupline+1,3,o,0,9600,LK13BE,1,30,2F3F210D0A,063035310D0A; available without PIN, remove the semicolon the enable some optional values; only one string (@#) can be decoded per meter1,1-0:96.1.0*255(@#),Zählernummer,,id,0;1,1-0:0.2.0*255(@#),Firmware,,fw,01,1-0:1.8.0*255(@1,Gesamtverbrauch,kWh,total,4; available with PIN1,1-0:1.8.0*96(@1,Verbrauch 1 Tag,kWh,total_1d,41,1-0:1.8.0*97(@1,Verbrauch 7 Tage,kWh,total_7d,41,1-0:1.8.0*98(@1,Verbrauch 30 Tage,kWh,total_30d,41,1-0:1.8.0*99(@1,Verbrauch 365 Tage,kWh,total_365d,41,1-0:1.8.0*100(@1,Verbrauch ab reset,kWh,total_reset,41,1-0:16.7.0*255(@1,Verbrauch aktuell,W,power,20; available with PIN and full dataset enabled1,1-0:32.7.0*255(@1,Spannung L1,V,voltage_l1,11,1-0:52.7.0*255(@1,Spannung L2,V,voltage_l2,11,1-0:72.7.0*255(@1,Spannung L3,V,voltage_l3,11,1-0:31.7.0*255(@1,Strom L1,A, amperage_l1,11,1-0:51.7.0*255(@1,Strom L2,A, amperage_l2,11,1-0:71.7.0*255(@1,Strom L3,A, amperage_l3,11,1-0:81.7.1*255(@1,UL2 zu UL1,deg,angle_ul2_ul1,01,1-0:81.7.2*255(@1,UL3 zu UL1,deg,angle_ul3_ul1,01,1-0:81.7.4*255(@1,IL1 zu UL1,deg,angle_il1_ul1,01,1-0:81.7.15*255(@1,IL2 zu UL2,deg,angle_il2_ul2,01,1-0:81.7.26*255(@1,IL3 zu UL3,deg,angle_il2_ul3,01,1-0:14.7.0*255(@1,Frequenz,Hz,frequency,1#

Logarex LK13BE (SML) (LK13BE904639)~

This meter does not provide detailed information regarding phase etc.

View script
>D>B=>sensor53 r; Monitor Sensor at GPIO25=>sensor53 l25>M 1+1,3,s,0,9600,LK13BE,1,10,2F3F210D0A,063035310D0A1,77070100010800ff@1000,Energie gesamt,kWh,energy_sum,3 1,77070100010801ff@1000,Energie Tarif 1,kWh,energy_tarif1,3 1,77070100010802ff@1000,Energie Tarif 2,kWh,energy_tarif2,31,77070100020800ff@1000,Einspeisung,kWh,energy_supply,31,=h --------------1,77070100100700ff@1,Leistung,W,power,161,=h --------------1,77070100600100ff@#,Server ID,,meter_number,0#

Logarex LK13BE (SML) (e.g. LK13BE6067x9)~

View script
>D>B->sensor53 r>M 1+1,3,s,0,9600,LK13BE,1,10,2F3F210D0A,063035310D0A1,77070100010800ff@1000,Gesamt kWh bezogen,kWh,Power_total_in,11,77070100020800ff@1000,Gesamt kWh geliefert,kWh,Power_total_out,11,77070100100700ff@1,Verbrauch aktuell,W,Power_curr,01,77070100240700ff@1,Power L1,W,Power_L1_curr,01,77070100380700ff@1,Power L2,W,Power_L2_curr,01,770701004C0700ff@1,Power L3,W,Power_L3_curr,01,77070100200700ff@1,Voltage L1,V,Volt_L1_curr,11,77070100340700ff@1,Voltage L2,V,Volt_L2_curr,11,77070100480700ff@1,Voltage L3,V,Volt_L3_curr,11,770701001f0700ff@1,Amperage L1,A,Amperage_L1_curr,21,77070100330700ff@1,Amperage L2,A,Amperage_L2_curr,21,77070100470700ff@1,Amperage L3,A,Amperage_L3_curr,21,770701000e0700ff@1,Frequency,Hz,HZ,21,77070100510704ff@1,Phaseangle I-L1/U-L1,deg,phase_angle_p1,1 1,7707010051070fff@1,Phaseangle I-L2/I-L2,deg,phase_angle_p2,1 1,7707010051071aff@1,Phaseangle I-L3/I-L3,deg,phase_angle_p3,1 1,77070100510701ff@1,Phase angle U-L2/U-L1,deg,phase_angle_l2_l1,11,77070100510702ff@1,Phase angle U-L3/U-L1,deg,phase_angle_l3_l1,1#

PAFAL 20EC3gr~

Documentation for this Counter is very small. This informations were collected across the internet.

View script
>D>B->sensor53 r>M 1+1,3,o,0,300,PAFAL,1,30,2F3F210D0A,063030300D0A1,1.8.1*00(@1),Gesamtverbrauch_HT,kWh,Total_IN,21,1.8.2*00(@1),Gesamtverbrauch_NT,kWh,Total_IN,21,2.8.0*00(@1),Einspeisung,kWh,Total_OUT,2#
Dump of the script
15:48:40.855 : �H/PAF5EC3gr0000615:48:45.643 : �0.0.0(serialnumber)15:48:46.260 : 0.0.1(PAF)15:48:46.768 : F.F(00)15:48:47.405 : 0.2.0(1.27)15:48:48.314 : 1.8.1*00(071354.27)15:48:49.228 : 1.8.2*00(070726.91)15:48:50.149 : 2.8.0*00(013640.33)15:48:52.730 : C.2.1(000000000000)( )15:48:53.542 : 0.2.2(:::::G11)!

Peacefair PZEM004TV30 (MODBus)~

PZEM004T V30 multiple meters on Modbus

View script
>D>B->sensor53 r>M 1+1,3,m,0,9600,ENERGY,1,1,02040000,02040001,02040003,02040005,02040007,02040008,03040000,03040001,03040003,03040005,03040007,03040008,05040000,05040001,05040003,05040005,05040007,050400081,=h<hr/>Sensor-21,020404UUuuxxxxxxxx@i0:10,Voltage,V,Sensor-1-V,21,020404UUuuUUuusxxxx@i1:1000,Current,A,Sensor-1-A,21,020404UUuuUUuusxxxx@i2:10,Power,W,Sensor-1-W,21,020404UUuuUUuusxxxx@i3:1000,Energy,kWh,Sensor-1-kWh,41,020404UUuuxxxxxxxx@i4:10,Frequency,Hz,Sensor-1-hz,21,020404UUuuxxxxxxxx@i5:100,Power Factor,PF,Sensor-1-PF,21,=h<hr/>Sensor-31,030404UUuuxxxxxxxx@i6:10,Voltage,V,Sensor-2-V,21,030404UUuuUUuusxxxx@i7:1000,Current,A,Sensor-2-A,21,030404UUuuUUuusxxxx@i8:10,Power,W,Sensor-2-W,21,030404UUuuUUuusxxxx@i9:1000,Energy,kWh,Sensor-2-kWh,41,030404UUuuxxxxxxxx@i10:10,Frequency,Hz,Sensor-2-hz,21,030404UUuuxxxxxxxx@i11:100,Power Factor,PF,Sensor-2-PF,21,=h<hr/>Sensor-51,050404UUuuxxxxxxxx@i12:10,Voltage,V,Sensor-05-V,21,050404UUuuUUuusxxxx@i13:1000,Current,A,Sensor-05-A,21,050404UUuuUUuusxxxx@i14:10,Power,W,Sensor-05-W,21,050404UUuuUUuusxxxx@i15:1000,Energy,kWh,Sensor-05-kWh,41,050404UUuuxxxxxxxx@i16:10,Frequency,Hz,Sensor-05-hz,21,050404UUuuxxxxxxxx@i17:100,Power Factor,PF,Sensor-05-PF,2#

Resol Deltasol BS Plus (VBus)~

This is a controller for standard solar thermal systems equipped with VBus data interface. Outputs data every second at 9600 baud 8N1. To connect to this and read data from the bus a level shifting is needed as the voltage is around 8V. Although this is a symmetric connection supporting long wires for our purposes it's enough to measure its polarity with a voltmeter and adapt the level appropriately to 3.3V using the below circuit (many others exist but this is simple and works). Do not connect the GND pin of Wemos with the ground of Resol unit as that may damage the output port of it. The Wemos module needs its own power supply (double insulated recommended).

Smart Meter Interface - Tasmota (3)

The script (compile firmware with SML_REPLACE_VARS)
>Dr="1,AA100021421000010774">B=>sensor53 r>M 1+1,3,v,0,9600,Solar%r%vo12ut@#,time,,zeit,1%r%vo0sw@10,S1 COL,°C,sens1,1%r%vo2sw@10,S2 TST1,°C,sens2,1%r%vo4sw@10,S3 TST2,°C,sens3,1%r%vo6sw@10,S4 TR,°C,sens4,1%r%vo10ub@b0:1,R1 PUMP,,relay1,0%r%vo10ub@b1:1,R2 VALVE,,relay2,0%r%vo8ub@1,Pump1 speed,%%,pump1,0%r%vo9ub@1,Pump2 speed,%%,pump2,0%r%vo20uw@1,p1,Wh,p1,0%r%vo22uw@1,p1000,Wh,p2,0%r%vo24uw@1,p1000000,Wh,p3,0%r%vo15ub@b0:1,Col Max,,col1,0%r%vo15ub@b1:1,Col Min,,col2,0%r%vo15ub@b2:1,Col Frost,,col3,0%r%vo15ub@b3:1,Col Opt,,col4,0%r%vo15ub@b4:1,Col Rueck,,col5,0%r%vo15ub@b5:1,Col WMZ,,col6,0#

Sanxing SX6x1 (SxxU1x) (Ascii OBIS)~

Tested on SX631 (S34U18). Needs an RJ12 cable and a small adaptor circuit: Smart Meter Interface - Tasmota (4) (Note how power for the Wemos module is drawn directly from the meter. No external power supply needed)

This meter sends bursts of data at 115200 baud every 10 seconds. Some data lines exceed 1038 characters. To adapt to these conditions, compile firmware with:

#define SML_BSIZ 1060#define MAX_METERS 1#define TMSBSIZ 2048#define USE_SML_SCRIPT_CMD#define SML_REPLACE_VARS
View script
>Dr="1,0-0:98.1.0(@(";use a variable to store the decode string>Bsmlj=0;don't send teleperiod MQTT at boot, because we can have 0 values (meter didn't send data yet)->sensor53 r>Rsmlj=0;don't send teleperiod MQTT at script restart, because we can have 0 values (meter didn't send data yet)>Sif upsecs>22thensmlj|=1endif;only send teleperiod MQTT if 22 seconds passed since boot (during this time meter most probably sent data)>M 1+1,3,o,16,115200,Name,11,1-0:32.7.0(@1,L1 Voltage,V,volts_l1,11,1-0:52.7.0(@1,L2 Voltage,V,volts_l2,11,1-0:72.7.0(@1,L3 Voltage,V,volts_l3,11,1-0:14.7.0(@1,Frequency,Hz,freq,21,0-0:96.14.0(@1,Current tariff,,tariff,01,=h<hr/>1,1-0:1.8.0(@1,Energy import,kWh,enrg_imp,31,1-0:2.8.0(@1,Energy export,kWh,enrg_exp,31,1-0:1.8.1(@1,Energy import T1,kWh,enrg_imp_t1,31,1-0:1.8.2(@1,Energy import T2,kWh,enrg_imp_t2,31,1-0:2.8.1(@1,Energy export T1,kWh,enrg_exp_t1,31,1-0:2.8.2(@1,Energy export T2,kWh,enrg_exp_t2,31,1-0:1.7.0(@1,Power import,kW,pwr_imp,31,1-0:2.7.0(@1,Power export,kW,pwr_exp,31,1-0:13.7.0(@1,Power factor,,factor,31,=h<hr/>1,1-0:3.8.0(@1,Reactive nrg import,kvarh,nrg_reac_imp,31,1-0:4.8.0(@1,Reactive nrg export,kvarh,nrg_reac_exp,31,1-0:5.8.0(@1,Reactive energy QI,kvarh,nrg_reac_q1,31,1-0:6.8.0(@1,Reactive energy QII,kvarh,nrg_reac_q2,31,1-0:7.8.0(@1,Reactive energy QIII,kvarh,nrg_reac_q3,31,1-0:8.8.0(@1,Reactive energy QIV,kvarh,nrg_reac_q4,31,1-0:5.7.0(@1,Reactive power QI,kvar,pwr_reac_q1,31,1-0:6.7.0(@1,Reactive power QII,kvar,pwr_reac_q2,31,1-0:7.7.0(@1,Reactive power QIII,kvar,pwr_reac_q3,31,1-0:8.7.0(@1,Reactive power QIV,kvar,pwr_reac_q4,31,=h<hr/>1,=hPrevious month stats:%r%1:1,Energy import,kWh,mo_enrg_imp,3%r%2:1,Energy import T1,kWh,mo_enrg_impt1,3%r%3:1,Energy import T2,kWh,mo_enrg_impt2,3%r%4:1,Energy export,kWh,mo_enrg_exp,3%r%5:1,Energy export T1,kWh,mo_enrg_expt1,3%r%6:1,Energy export T2,kWh,mo_enrg_expt2,3%r%7:1,Reactive nrg import,kvarh,mo_nrg_reac_imp,3%r%8:1,Reactive nrg export,kvarh,mo_nrg_reac_exp,3%r%9:1,Reactive energy QI,kvarh,mo_nrg_reac_q1,3%r%10:1,Reactive energy QII,kvarh,mo_nrg_reac_q2,3%r%11:1,Reactive energy QIII,kvarh,mo_nrg_reac_q3,3%r%12:1,Reactive energy QIV,kvarh,mo_nrg_reac_q4,3%r%13:1,Reactive energy SUM?,kvarh,mo_nrg_reac_sum,3%r%14:1,Peak power import L1,kW,mo_pw_pk_in_l1,3%r%15:1,Peak power import L2,kW,mo_pw_pk_in_l2,3%r%16:1,Peak power import L3,kW,mo_pw_pk_in_l3,3%r%17:1,Peak power export L1,kW,mo_pw_pk_ex_l1,3%r%18:1,Peak power export L2,kW,mo_pw_pk_ex_l2,3%r%19:1,Peak power export L3,kW,mo_pw_pk_ex_l3,3#
Sample data
/12345678901230-0:1.0.0(202056789012W)0-0:42.0.0(AUX1234567890123)0-0:96.1.0(1234567890)0-0:96.14.0(0001)0-0:96.50.68(ON)0-0:17.0.0(90.000*kW)1-0:1.8.0(000258.072*kWh)1-0:1.8.1(000103.782*kWh)1-0:1.8.2(000154.290*kWh)1-0:1.8.3(000000.000*kWh)1-0:1.8.4(000000.000*kWh)1-0:2.8.0(000048.367*kWh)1-0:2.8.1(000032.813*kWh)1-0:2.8.2(000015.554*kWh)1-0:2.8.3(000000.000*kWh)1-0:2.8.4(000000.000*kWh)1-0:3.8.0(000003.513*kvarh)1-0:4.8.0(000156.910*kvarh)1-0:5.8.0(000003.498*kvarh)1-0:6.8.0(000000.015*kvarh)1-0:7.8.0(000027.718*kvarh)1-0:8.8.0(000129.192*kvarh)1-0:15.8.0(000306.440*kWh)1-0:32.7.0(233.0*V)1-0:52.7.0(230.6*V)1-0:72.7.0(228.7*V)1-0:31.7.0(002*A)1-0:51.7.0(002*A)1-0:71.7.0(001*A)1-0:13.7.0(0.758)1-0:33.7.0(0.615)1-0:53.7.0(0.746)1-0:73.7.0(0.937)1-0:14.7.0(49.98*Hz)1-0:1.7.0(00.000*kW)1-0:2.7.0(00.854*kW)1-0:5.7.0(00.000*kvar)1-0:6.7.0(00.000*kvar)1-0:7.7.0(00.735*kvar)1-0:8.7.0(00.000*kvar)0-0:98.1.0(210301000000W)(000249.070*kWh)(000100.816*kWh)(000148.254*kWh)(000047.903*kWh)(000032.349*kWh)(000015.554*kWh)(000003.513*kvarh)(000150.665*kvarh)(000003.498*kvarh)(000000.015*kvarh)(000027.119*kvarh)(000123.546*kvarh)(000296.974*kWh)(04.872*kW)(04.872*kW)(04.072*kW)(01.844*kW)(01.672*kW)(01.844*kW)0-0:96.13.0(����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������)!DA6A

SBC ALE3 (MODBus)~

View script
>DH>B->sensor53 r>M 1+1,3,M,1,9600,SBC,1,1,02030023,02030028,0203002d,02030025,0203002a,0203002f,02030032,02030027,0203002c,02030031,02030021,02030015,020300181,020304UUuu@i0:1,Spannung L1,V,Voltage_L1,01,020304UUuu@i1:1,Spannung L2,V,Voltage_L2,01,020304UUuu@i2:1,Spannung L3,V,Voltage_L3,01,020304xxxxUUuu@i0:10,Strom L1,A,Current_L1,21,020304xxxxUUuu@i1:10,Strom L2,A,Current_L2,21,020304xxxxUUuu@i2:10,Strom L3,A,Current_L3,21,=h=1,020304UUuu@i3:100,Leistung L1,kW,Power_L1,31,020304UUuu@i4:100,Leistung L2,kW,Power_L2,31,020304UUuu@i5:100,Leistung L3,kW,Power_L3,31,020304UUuu@i6:100,Leistung Total,kW,Power_Total,31,020304xxxxSSss@i3:100,BlindLeistung L1,kVAr,ReaktivePower_L1,31,020304xxxxSSss@i4:100,BlindLeistung L2,kVAr,ReaktivePower_L2,31,020304xxxxSSss@i5:100,BlindLeistung L3,kVAr,ReaktivePower_L3,31,020304xxxxSSss@i6:100,BLeistung Total,kVAr,ReaktivePower_Total,31,=h=1,020304UUuu@i7:100,CosPhi L1,,CosPhi_L1,21,020304UUuu@i8:100,CosPhi L2,,CosPhi_L2,21,020304UUuu@i9:100,CosPhi L3,,CosPhi_L3,21,=h=1,020304UUuuUUuu@i10:100,T2 Wert,kWh,T2_Value,2#

SBC ALE3 2x (MODBus)~

View script
>D>B->sensor53 r>M 1+1,3,M,1,9600,Meter,1,1,01030023,01030028,0103002d,01030025,0103002a,0103002f,01030032,01030027,0103002c,01030031,0103001B,0103001d,03030023,03030028,0303002d,03030025,0303002a,0303002f,03030032,03030027,0303002c,03030031,0303001B,0303001d1,=h Domestic Electricity:1,010304UUuuUUuu@i10:100,1 Tariff 1 total,kWh,M1_T1_total,21,010304UUuuUUuu@i11:100,1 Tariff 1 partial,kWh,M1_T1_par,21,=h Readings:1,010304UUuu@i0:1,1 Voltage L1,V,M1_Voltage_L1,01,010304UUuu@i1:1,1 Voltage L2,V,M1_Voltage_L2,01,010304UUuu@i2:1,1 Voltage L3,V,M1_Voltage_L3,01,010304xxxxUUuu@i0:10,1 Current L1,A,M1_Current_L1,21,010304xxxxUUuu@i1:10,1 Current L2,A,M1_Current_L2,21,010304xxxxUUuu@i2:10,1 Current L3,A,M1_Current_L3,21,010304UUuu@i3:100,1 Active Power L1,kW,M1_PRMS_L1,31,010304UUuu@i4:100,1 Active Power L2,kW,M1_PRMS_L2,31,010304UUuu@i5:100,1 Active Power L3,kW,M1_PRMS_L3,31,010304UUuu@i6:100,1 Active Power total,kW,M1_PRMS_total,31,010304xxxxSSss@i3:100,1 Reactive Power L1,kVAr,M1_QRMS_L1,31,010304xxxxSSss@i4:100,1 Reactive Power L2,kVAr,M1_QRMS_L2,31,010304xxxxSSss@i5:100,1 Reactive Power L3,kVAr,M1_QRMS_L3,31,010304xxxxSSss@i6:100,1 Reactive Power total,kVAr,M1_QRMS_total,31,010304UUuu@i7:100,1 CosPhi L1,,M1_CosPhi_L1,21,010304UUuu@i8:100,1 CosPhi L2,,M1_CosPhi_L2,21,010304UUuu@i9:100,1 CosPhi L3,,M1_CosPhi_L3,21,=h________________________________________________; meter 2 +12 offset1,=h Heat Pump1,030304UUuuUUuu@i22:100,2 Tariff 1 total,kWh,M2_T1_total,21,030304UUuuUUuu@i23:100,2 Tariff 1 partial,kWh,M2_T1_par,21,=h Readings:1,030304UUuu@i12:1,2 Voltage L1,V,M2_Voltage_L1,01,030304UUuu@i13:1,2 Voltage L2,V,M2_Voltage_L2,01,030304UUuu@i14:1,2 Voltage L3,V,M2_Voltage_L3,01,030304xxxxUUuu@i12:10,2 Current L1,A,M2_Current_L1,21,030304xxxxUUuu@i13:10,2 Current L2,A,M2_Current_L2,21,030304xxxxUUuu@i14:10,2 Current L3,A,M2_Current_L3,21,030304UUuu@i15:100,2 Active Power L1,kW,M2_PRMS_L1,31,030304UUuu@i16:100,2 Active Power L2,kW,M2_PRMS_L2,31,030304UUuu@i17:100,2 Active Power L3,kW,M2_PRMS_L3,31,030304UUuu@i18:100,2 Active Power total,kW,M2_PRMS_total,31,030304xxxxSSss@i15:100,2 Reactive Power L1,kVAr,M2_QRMS_L1,31,030304xxxxSSss@i16:100,2 Reactive Power L2,kVAr,M2_QRMS_L2,31,030304xxxxSSss@i16:100,2 Reactive Power L3,kVAr,M2_QRMS_L3,31,030304xxxxSSss@i18:100,2 Reactive Power total,kVAr,M2_QRMS_total,31,030304UUuu@i19:100,2 CosPhi L1,,M2_CosPhi_L1,21,030304UUuu@i20:100,2 CosPhi L2,,M2_CosPhi_L2,21,030304UUuu@i21:100,2 CosPhi L3,,M2_CosPhi_L3,2#

Schneider iEM3150 (MODBus)~

Set device parity to EVEN. Set device serial baud rate to 9600.

View script
>D>B=>sensor53 r>M 1+1,3,M,0,9600,MODBUS,1,1,0103B02B,01030BB7,01030BB9,01030BBB,01030BC1,01030BCB,01030BCD,01030BCF,01030BD1,01030BD3,01030BD5,01030BD7,01030BDB,01030BED,01030BEF,01030BF1,01030BF3,01030C0B,01030C25; ***************************************; * Schneider iEM3150 Energy Meter *; ***************************************; Serial: 9600; Device parity: EVEN; Slave address: 0x01; ***************************************1,010304ffffffff@i0:1,Wirkenergie,kWh,1_8_0,31,010304ffffffff@i1:1,Strom L1,A,31_7_0,31,010304ffffffff@i2:1,Strom L2,A,51_7_0,31,010304ffffffff@i3:1,Strom L3,A,71_7_0,31,010304ffffffff@i4:1,Strom Avg,A,11_7_0,31,010304ffffffff@i5:1,Spannung L1-L2,V,V_L1-L2,31,010304ffffffff@i6:1,Spannung L2-L3,V,V_L2-L3,31,010304ffffffff@i7:1,Spannung L3-L1,V,V_L3-L1,31,010304ffffffff@i8:1,Spannung L-L,V,V_L-L_sum,31,010304ffffffff@i9:1,Spannung L1-N,V,32_7_0,31,010304ffffffff@i10:1,Spannung L2-N,V,52_7_0,31,010304ffffffff@i11:1,Spannung L3-N,V,72_7_0,31,010304ffffffff@i12:1,Spannung L-N,V,12_7_0,31,010304ffffffff@i13:1,Wirkleistung L1,kW,21_7_0,31,010304ffffffff@i14:1,Wirkleistung L2,kW,41_7_0,31,010304ffffffff@i15:1,Wirkleistung L3,kW,61_7_0,31,010304ffffffff@i16:1,Wirkleistung,kW,1_7_0,31,010304ffffffff@i17:1,Leistungsfaktor,,13_7_0,31,010304ffffffff@i18:1,Frequenz,Hz,14_7_0,3#

Schneider iEM3155 (MODBus)~

Set device parity to NONE

View script
 >D >B ->sensor53 r>M 1 +1,3,m,0,19200,iEM3155,1,1,0103B02D,0103B02B,01030BF3,01030BED,01030BEF,01030BF1,01030BD3,01030BD5,01030BD7,01030BB7,01030BB9,01030BBB,01030C0B,01030C25; ***************************************; * Schneider iEM3155 Energy Meter *; ***************************************; Serial: 19200; Set device parity to NONE; Slave address: 0x01; https://download.schneider-electric.com/files?p_Doc_Ref=DOCA0005EN&p_enDocType=User+guide&p_File_Name=DOCA0005EN-13.pdf1,010304ffffffff@i0:1,Gesamteinspeisung,kWh,Gesamteinspeisung,01,010304ffffffff@i1:1,Gesamtverbrauch,kWh,Gesamtverbrauch,01,010304ffffffff@i2:0.001,Momentanverbrauch,W,Momentanverbrauch,01,010304ffffffff@i3:1,L1 Wirkenergie,kW,L1Wirkenergie,31,010304ffffffff@i4:1,L2 Wirkenergie,kW,L2Wirkenergie,31,010304ffffffff@i5:1,L3 Wirkenergie,kW,L3Wirkenergie,31,010304ffffffff@i6:1,L1 Spannung,V,L1Spannung,01,010304ffffffff@i7:1,L2 Spannung,V,L2Spannung,01,010304ffffffff@i8:1,L3 Spannung,V,L3Spannung,01,010304ffffffff@i9:1,L1 Strom,A,L1Strom,21,010304ffffffff@i10:1,L2 Strom,A,L2Strom,21,010304ffffffff@i11:1,L3 Strom,A,L3Strom,21,010304ffffffff@i12:1,Leistungsfaktor,,Leistungsfaktor,21,010304ffffffff@i13:1,Frequenz,Hz,Frequenz,0#

SDM230 (MODBus)~

View script
>D ms="1,010404ffffffff@" >B ->sensor53 r >M 1 +1,3,m,0,9600,PV,1,2,01040000,01040006,0104000C,01040012,01040018,0104001E,01040024,01040046,01040048,0104004A,0104004C,0104004E,01040054,01040056,01040058,0104005A,0104005C,0104005E,01040102,01040108,01040152,01040158,01040180,01040182 %ms%i0:1,Volt,V,Volt,2 %ms%i1:1,Strom P1,A,Strom,3 %ms%i2:1,*,W,Leistung,2 %ms%i3:1,Scheinleistung,VA,ScheinLeistung,2 %ms%i4:1,Blindleistung,VAr,Blindleistung,2 %ms%i5:1,P-Faktor,,P_Faktor,1 %ms%i6:1,cosPhi,°,cosPhi,2 %ms%i7:1,Frequenz,Hz, Frequenz,1 %ms%i8:1,Wirkleistung Import,kWh,Wirkleistung_Im1,3 %ms%i9:1,Wirkleistung Export,kWh,Wirkleistung_Ex,3 %ms%i10:1,Blindleistung Import,VkkVARh,Blindleistung_Im,3 %ms%i11:1,Blindleistung Export,VkkVARh,Blindleistung_Ex,3 %ms%i12:1,Gesamtleistungsbedarf,W,GesLeistBed,2 %ms%i13:1,GesamtLeistung Max,W,GesLeistMax,2 %ms%i14:1,Akt.Nachfrage,W,AktNachfrage,2 %ms%i15:1,Rückleistungs Bed,W,RueckLeistBed,2 %ms%i16:1,Rückleistungs Bed Max,W,RueckLeistBedMax,2 %ms%i17:1,Strom Nachfrage,A,StromNachfrage2,2 %ms%i19:1,Max Strombedarf,A,StromBedMax,2 %ms%i20:1,Wirkleistung Gesamt,kWh,Wirkleistung_total,2 %ms%i21:1,Blindleistung Gesamt,kVARh,Blindleistung_total,2 %ms%i22:1,Temp Gesamtleistung,kWh,TempGesamtLeist,2 # 

SDM530 (MODBus)~

View script
>D >B ->sensor53 r>M 1 +1,3,m,0,9600,MODBUS,1,1,01040000,01040002,01040004,01040006,01040008,0104000a,0104000c,0104000e,01040010 1,010404ffffffff@i0:1,Voltage P1,V,Voltage_P1,2 1,010404ffffffff@i1:1,Voltage P2,V,Voltage_P2,2 1,010404ffffffff@i2:1,Voltage P3,V,Voltage_P3,2 1,010404ffffffff@i3:1,Current P1,A,Current_P1,2 1,010404ffffffff@i4:1,Current P2,A,Current_P2,2 1,010404ffffffff@i5:1,Current P3,A,Current_P3,2 1,010404ffffffff@i6:1,Active Power P1,W,Power_P1,2 1,010404ffffffff@i7:1,Active Power P2,W,Power_P2,2 1,010404ffffffff@i8:1,Active Power P3,W,Power_P3,2 # 

SDM72D (MODBus)~

Script to extract readings from Eastron SDM72D Series devices (tested on SDM72D-M). Manual with comprehensive documentation about all Modbus registers available here.

View script
>D>B->sensor53 r>M 1+1,25,mN1,0,9600,SDM72D,26,1,01040000,01040002,01040004,01040006,01040008,0104000a,0104000c,0104000e,01040010,01040012,01040014,01040016,01040018,0104001a,0104001c,0104001e,01040020,01040022,0104002a,0104002e,01040030,01040034,01040038,0104003c,0104003e,01040046,01040048,0104004A,01040156,01040158,0104018c,01040500,010405021,010404ffffffff@i0:1,Voltage P1,V,voltage_phase1,21,010404ffffffff@i1:1,Voltage P2,V,voltage_phase2,21,010404ffffffff@i2:1,Voltage P3,V,voltage_phase3,21,010404ffffffff@i3:1,Current P1,A,current_phase1,21,010404ffffffff@i4:1,Current P2,A,current_phase2,21,010404ffffffff@i5:1,Current P3,A,current_phase3,21,010404ffffffff@i6:1,Power P1,W,power_phase1,21,010404ffffffff@i7:1,Power P2,W,power_phase2,21,010404ffffffff@i8:1,Power P3,W,power_phase3,21,010404ffffffff@i9:1,Power Apparent P1,VA,power_apparent_phase1,21,010404ffffffff@i10:1,Power Apparent P2,VA,power_apparent_phase2,21,010404ffffffff@i11:1,Power Apparent P3,VA,power_apparent_phase3,21,010404ffffffff@i12:1,Power Reactive P1,VAr,power_reactive_phase1,21,010404ffffffff@i13:1,Power Reactive P2,VAr,power_reactive_phase2,21,010404ffffffff@i14:1,Power Reactive P3,VAr,power_reactive_phase3,21,010404ffffffff@i15:1,Power Factor P1,,power_factor_phase1,21,010404ffffffff@i16:1,Power Factor P2,,power_factor_phase2,21,010404ffffffff@i17:1,Power Factor P3,,power_factor_phase3,21,010404ffffffff@i18:1,Average Voltage,V,voltage_avg,21,010404ffffffff@i19:1,Average Current,A,current_avg,21,010404ffffffff@i20:1,Current Total,A,current_total,21,010404ffffffff@i21:1,Power Total,W,power_total,21,010404ffffffff@i22:1,Power Apparent Total,VA,power_apparent_total,21,010404ffffffff@i23:1,Power Reactive Total,VAr,power_reactive_total,21,010404ffffffff@i24:1,Power Factor Total,,power_factor_total,21,010404ffffffff@i25:1,Frequency,Hz,frequency,21,010404ffffffff@i26:1,Energy Imported,kWh,energy_imported,31,010404ffffffff@i27:1,Energy Exported,kWh,energy_exported,31,010404ffffffff@i28:1,Energy Total,kWh,energy_total,31,010404ffffffff@i29:1,Energy Reactive Total,kVArh,energy_reactive_total,31,010404ffffffff@i30:1,Net Energy,kWh,energy_net,31,010404ffffffff@i31:1,Import Power,W,power_import,21,010404ffffffff@i32:1,Export Power,W,power_export,2#

Sorel LTDC (CANBus)~

Compile firmware with #define USE_SML_CANBUS. Use a proper CAN transceiver. You need a 120Ohms resistor in the second CAN port of the controller, otherwise ESP32 device will not decode anything on the bus, the baudrate is 250 KBITS.

View script
>D>B->sensor53 r>M 1; SOREL LTDC; params -> 04 = baudrate 250kb + number of receive buffers * 100+1,3,C,0,3204,CAN,1,51,100124800500uuUU@10,Temp S1,ºC,S1,01,100124800501uuUU@10,Temp S2,ºC,S2,01,100124800502uuUU@10,Temp S3,ºC,S3,01,100124800503uuUU@10,Temp S4,ºC,S4,01,10022480050000ss@-0.01,Relay R1,,R1,01,10022480050100ss@-0.01,Relay R2,,R2,01,10022480050200ss@-0.01,Relay R3,,R3,0#

Siemens IM-350~

This device is used in the grid of Wiener Netze. Insert your Key into the script.

View script
>D>B=>sensor53 r>M 1+1,3,r,0,9600,Home1,=so3,2561,=so4,KEY1,020909x14UUuuUUuu@1000,Zählerstand,kWh,Zaehlerstand,21,020909x34UUuuUUuu@1000,Bezug aktuell,kwh,Bezug,3 1,020909x24UUuuUUuu@1000,BL Bezug,kvarh,BL_Bezug,3 1,020909x19UUuuUUuu@1000,Einspeisung Gesamt,kWh,Einspeisung_ges,2 1,020909x39UUuuUUuu@1000,Einspeisung aktuell ,kW,Einspeisung_akt,3 1,020909x29UUuuUUuu@1000,BL Einspeisung,kvarh,BL_Einspeisung,31,020909x19UUuu@1,year,,year,01,020909x21ss@1,month,,month,01,020909x22ss@1,day,,day,01,020909x24ss@1,hh,,hh,01,020909x25ss@1,mm,,mm,01,020909x26ss@1,ss,,ss,01,020909x32UUuuUUuu@1000,+A,kWh,+A,31,020909x37UUuuUUuu@1000,-A,kWh,-A,31,020909x42UUuuUUuu@1000,+R,varh,+R,31,020909x47UUuuUUuu@1000,-R,varh,-R,31,020909x52UUuuUUuu@1,+P,W,+P,31,020909x57UUuuUUuu@1,-P,W,-P,31,020909x62UUuuUUuu@1,+Q,var,+Q,31,020909x67UUuuUUuu@1,-Q,var,-Q,3#

Siemens TD-3511~

This device is used in the grid of EGTF - Elektrizitäts-Genossenschaft Tacherting-Feichten eG. Read uses IEC 62056-21 data mode "C" without acknowledgement by the reading device.

View script
>D>B->sensor53 r>M 1+1,3,o,0,300,STROM,1,600,2F3F210D0A1,1.8.1(@1,Total Consumed,kWh,Total_in,31,2.8.1(@1,Total Delivered,kWh,Total_out,31,0.0.0(@#),Meter Number,,Meter_number,0#

Trovis 557x (MODBus)~

These heating regulators have a lot of registers. If your station number is different from standard (247 ==> 0xF7) you have got to change every first byte accordingly.

View script
>D>B->sensor53 r>M 1+1,3,m,0,19200,Trovis,1,2,rF7030009000E,rF703001C0004,F703006A1,F7031CSSss@i0:10,Außentemp.,°C,Temp_Outside,11,F7031CxxxxxxxxxxxxSSss@i0:10,Vorlauftemp.,°C,Temp_Flow,11,F7031CxxxxxxxxxxxxxxxxxxxxxxxxxxxxSSss@i0:10,Rücklauftemp.,°C,Temp_Return,11,F7031CxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxSSss@i0:10,Speichertemp.,°C,Temp_Vessel,11,F70308UUuu@i1:1,MesswertImp-h,imp/h,Metric_ImpH,01,F70308xxxxUUuu@i1:100,Messwertm3-h,m³/h,Metric_M3H,21,F70308xxxxxxxxUUuu@i1:10,AA10-10V,V,Metric_AA10,11,F70308xxxxxxxxxxxxUUuu@i1:10,AA20-10V,V,Metric_AA20,11,F70304UUuu@i2:1,StellsignalRk1,%,CtrlSig_RK1,0#

WOLF CSZ 11/300 Heater (EBus)~

View script
>D >B ->sensor53 r>M 1 +1,3,e,0,2400,EBUS 1,xxxx0503xxxxxxxxxxxxxxxxss@1,Outside temperature,C,Outsidetemp,0 1,xxxx5014xxxxxxxxxxuu@1,Romm temperature,C,Roomtemp,0 1,xxxx0503xxxxxxxxxxxxxxuu@1,Warmwater,C,Warmwater,0 1,xxxx0503xxxxxxxxxxuu@1,Boiler,C,Boiler,0 1,03fe0503xxxxxxxxxxxxuu@1,Returns,C,Returns,0 1,03fe0503xxxxuu@1,Status,,Status,0 1,03fe0503xxxxxxuu@b3:1,Burner on,,Burner,0 1,xxxx5017xxxxxxuuuu@16,Solar collektor,C,Collector,1 1,xxxx5017xxxxxxxxxxuuuu@16,Solar storage,C,Solarstorage,1 1,xxxx5017xxuu@b0:1,Solar pump on,,Solarpump,0 # 

ZPA GH302 (SML)~

View script
>D>B=>sensor53 r>M 1+1,3,s,0,9600,Strom1,77070100010800ff@1000,Bezug,kWh,Total_in,01,77070100020800ff@1000,Einspeisung,kWh,Total_out,0#

ZPA GH305 (SML)~

View script
>D>B->sensor53 r>M 1+1,3,s,0,9600,SML1,77070100010800ff@1000,Total Verbrauch,kWh,Total_in,31,77070100020800ff@1000,Total Einspeisung,kWh,Total_out,31,=h==================1,77070100100700ff@1,Actual load,W,Power_curr,01,=h==================1,=m 9+10+11 @1,Currents L1+L2+L3,A,Curr_summ,31,=m 12+13+14/#3 @1,Voltage L1+L2+L3/3,V,Volt_avg,31,=h==================1,77070100240700ff@1,Consumption P1,W,Power_p1,21,77070100380700ff@1,Consumption P2,W,Power_p2,21,770701004c0700ff@1,Consumption P3,W,Power_p3,21,=h ----1,770701001f0700ff@1,Current L1,A,Curr_p1,31,77070100330700ff@1,Current L2,A,Curr_p2,31,77070100470700ff@1,Current L3,A,Curr_p3,31,=h ----1,77070100200700ff@1,Voltage L1,V,Volt_p1,31,77070100340700ff@1,Voltage L2,V,Volt_p2,31,77070100480700ff@1,Voltage L3,V,Volt_p3,31,=h==================1,77070100510701ff@1,Phaseangle L2-L1,deg,phase_angle_L2_L1,01,77070100510702ff@1,Phaseangle L3-L1,deg,phase_angle_L3_L1,01,77070100510704ff@1,Phaseangle I/U L1,deg,phase_angle_L1,1 1,7707010051070fff@1,Phaseangle I/U L2,deg,phase_angle_L2,1 1,7707010051071aff@1,Phaseangle I/U L3,deg,phase_angle_L3,1 1,770701000e0700ff@1,Frequency,Hz,Freq,1;1,=h=======UNBEKANNT===========;1,77070100000009FF@#,unbekannt1,,Power_Use_Sum,3;1,77070100000000FF@#,unbekannt2,,Power_Use_Sum,3;1,7707010060320101@#,unbekannt3,,Meter_id,0;1,77010b0a01445a47@#,unbekannt4,,Meter_id,0;1,77070100600100ff@#,unbekannt5,,Meter_id,01,=h#

inepro Metering PRO380-MB (M-Bus)~

This is a controller for standard solar thermal systems equipped with VBus data interface. Outputs data every second at 9600 baud 8N1. To connect to this and read data from the bus a level shifting is needed as the voltage is around 8V. Although this is a symmetric connection supporting long wires for our purposes it's enough to measure its polarity with a voltmeter and adapt the level appropriately to 3.3V using the below circuit (many others exist but this is simple and works). Do not connect the GND pin of Wemos with the ground of Resol unit as that may damage the output port of it. The Wemos module needs its own power supply (double insulated recommended).

The script (compile firmware with USE_SML_M)

Smart Meter Interface - Tasmota (5) Smart Meter Interface - Tasmota (6)

>D>B->sensor53 r ; ->sensor53 d1 ; Dump mode for console debug>M 1+1,16,rE1,0,2400,,17,100,680303685300b40716,105b005b16,680303685300B104161,4BFD47bcd6@100,L1 voltage,V,L1_V,21,8B01FD47bcd6@100,L2 voltage,V,L2_V,21,CB01FD47bcd6@100,L3 voltage,V,L3_V,21,4BFD59bcd6@100,L1 current,A,L1_I,21,8B01FD59bcd6@100,L2 current,A,L2_I,21,CB01FD59bcd6@100,L3 current,A,L3_I,21,4C2Abcd5@1000,L1 active power,kW,L1_P,31,8C012Abcd5@1000,L2 active power,kW,L2_P,31,CC012Abcd5@1000,L3 active power,kW,L3_P,31,0C2Abcd6@1000,Total active power,kW,T_P,31,4C04bcd8@100,L1 total energy,kWh,L1_TE,21,8C0104bcd8@100,L2 total energy,kWh,L2_TE,21,CC0104bcd8@100,L3 total energy,kWh,L3_TE,21,000C04bcd8@100,Total active energy,kWh,TE,21,6C04bcd8@100,L1 reverse energy,kWh,L1_TRE,21,AC0104bcd8@100,L2 reverse energy,kWh,L2_TRE,21,EC0104bcd8@100,L3 reverse energy,kWh,L3_TRE,21,2C04bcd8@100,Total reverse energy,kWh,TRE,2#

AEConversion solar inverter INVXXX (RAW)~

Tested on an AEConversion INV500-90 with RS485 interface.

View script
>D>B=>sensor53 r; Monitor Sensor at GPIO25=>sensor53 l255>M 1+1,13,r,0,9600,aec,15,50,2101B203FD4D0D1,212717UUuux7@1,Leistung,W,power,01,212717x4UUuux4@1000,Energie,kWh,energy_sun,3#

SMA Solar Inverter (MODBus TCP)~

View script
>D>B=>sensor53 r>M1+1,[192.168.56.91],m,0,502,SMA,0,10,03047741,03047747,03047777,03047831,03047833,03047835,030478ED,030478EF,030478F1,03047893,030478E9,0304787D,03047881,r03047AA50004,r03047AA900041,030404U32@i0:1000,Gesamtertrag,kWh,v1,31,030404U32@i1:1000,Tagesertrag,kWh,v2,31,030404U32@i2:1000,Einspeisung_ges,kWh,v3,31,030404S32@i3:100,DC Str. A,A,v4,21,030404S32@i4:100,DC Sp. A,V,v5,21,030404S32@i5:100,DC Le. A,W,v6,21,030404S32@i6:100,DC Str. B,A,v7,21,030404S32@i7:100,DC Sp. B,V,v8,21,030404S32@i8:100,DC Le. B,W,v9,2;1,030404S32@i9:100,AC Le.,W,v10,2;1,030404S32@i10:10,WR_Temp,°C,v11,2;1,030404U32@i11:1,Batterieladung,%%,v12,01,030404S32@i12:10,Batt_Temp,°C,v13,2;1,030408U64@i13:1000,Batt_Ladung,kWh,v14,31,030408U64@i14:1000,Batt_EntLadung,kWh,v15,3#

HUAWEI R4850G2 Lipo Charger (CANBus)~

View script
>D 40IP=192.168.188.117ovolt=45maxc=30cstr="">B=>sensor53 r>Sif chg[ovolt]>0 {; change voltage 41.5 - 58.5cstr="908180FE0801000000"+hx(ovolt*1024)sml(1 3 cstr)}if chg[maxc]>0 {; change max current 0-60Acstr="908180FE0801030000"+hx(maxc*20)sml(1 3 cstr)}>M 1; Huawei R4850G2; params -> 03 = baudrate 125kb + number of receive buffers * 100+1,7,C,0,3203,CAN,6,10,908040FE0800000000000000001,1081407f0801700000UUuuUUuu@1024,Input Power,W,ipwr,11,1081407f0801710000UUuuUUuu@1024,Input Frequency,Hz,freq,11,1081407f0801780000UUuuUUuu@1024,Input Voltage,V,ivolt,11,1081407f0801720000UUuuUUuu@1024,Input Current,A,icurr,11,1081407f0801750000UUuuUUuu@1024,Output Voltage,V,ovolt,11,1081407f0801810000UUuuUUuu@1024,Output Current,A,ocurr,11,1081407f0801760000UUuuUUuu@20,Output Max Current,A,mcurr,11,1081407f0801800000UUuuUUuu@1024,Input Temp,C,itmp,11,1081407f08017f0000UUuuUUuu@1024,Output Temp,C,otmp,11,1081407f0801740000UUuuUUuu@1024,Efficiency,%%,eff,11,=so8,000000001,=so9,1081407f#>W<hr>nm(41.5 58.5 0.1 ovolt "Output Voltage (V): " 80 1) nm(0 60 0.1 maxc "Max Current (A): " 80 1) 

Kamstrup Multical M401~

View script
>Dscnt=0res=0>B=>sensor53 r>F; count 100msscnt+=1switch scnt;100ms after start: set sml driver to 300 baud case 1res=sml(1 0 300);1600ms send /#1 as HEX to triggercase 16res=sml(1 1 "2F23310D0A");2200ms later: switch sml driver to 1200 baudcase 22res=sml(1 0 1200);1000ms after start: Restart sequencecase 100scnt=0ends>M 1+1,3,o,0,1200,MC401,11,@s 0:1,Gesammt Verbrauch,kwh,total_in,01,@s 1:100,Gesammt Durchfluss,m3,total_flow,21,@s 2:1,Laufzeit,h,time,01,@s 3:100,Vorlauf Temperatur,C°,temp_in,21,@s 4:100,Rücklauf Temperatur,C°,temp_out,21,@s 5:100,Temperatur differenz,C°,delta_t,21,@s 6:10,Aktuelle Leistung,kW,power,11,@s 7:1,Durchlfuss,l/h,flow,01,@s 8:10,maximale Leistung,kWP,max_power,11,@s 9:1,Info,,info,01,=so3,256#

Sensus Pollucom F (Wärmemengenzähler, HeatMeter; used with Hichi IR interface)~

View script
>D;start, define variableswkup=1>B;setup sensor->sensor53 r->sensor53 d0->sensor53 l255;tper=300 >S; this device is powered by battery; frequent requests will lead to blocking and reduces lifetime; starting sequence:;- press button on device once;- restart Tasmota with script sctivated (you have 5 minutes to do this);- after 30s first data is retrieved and logged (including SYSLOG depending on Tasmota log config) ;- after 60s WebUI is updated first time;- now every 45min a new request is done, updated in WebUI (and transferred by MQTT every TPER period); polling period needs to be less 60min to avoid sleep mode of device!if upsecs==30 { ->sensor53 d1 print read meter (debug log 30s) =#readmeter}if upsecs==60 { ->sensor53 d0 print read meter (WebUI update 60s) =#readmeter}if upsecs%2700==0 { print read meter (modulo 2700s) =#readmeter}>M 1+1,3,rE1,0,2400,WAERME,1; note that maximum of chars per line is 8 so set buffer to 8 to get non-delayed decoding1,=so3,81,68080072bcd8@1,Zählernummer,,Zählernummer,0; note that 16 = 0+16 means that this particular value has 0 comma places but is transferred immediately by MQTT1,0c06bcd8@1,Energie,kWh,Energie,161,0c13bcd8@1000,Volumen,m³,Volumen,01,0c3bbcd8@1,Durchfluss,l/h,Durchfluss,01,0c2bbcd8@1,Leistung,W,Leistung,01,025auuUU@10,Durchflusstemperatur,°C,Durchflusstemperatur,11,025euuUU@10,Rücklauftemperatur,°C,Rücklauftemperatur,11,0360uuUU@1000,Temperaturdifferenz,K,Temperaturdifferenz,3##readmeterprint wakeup start;set serial protocolsml(-1 1 "2400:8N1");send 0x55 for 2,2 seconds with 8N1 (53x), 2400 baud (wakeup sequence)for wkup 1 53 1sml(1 1 "55555555555555555555")nextprint wakeup endwkup=1print wait for the meter;wait for the meter to wake updelay(350);switch serial protocolsml(-1 1 "2400:8E1")print Init MBus 1040004016; SCAN for Device 00sml(1 1 "1040004016")delay(350)print request data 107BFE7916 aktuelle Werte!!!sml(1 1 "107BFE7916");print request data 105BFE5916;sml(1 1 "105BFE5916")print request data finished#

Engelmann SensoStar E (Heat meter, used with Hichi IR interface)~

View script
>Dwkup=1>B;setup sensor->sensor53 d0->sensor53 r>S; this device is powered by battery; frequent requests will lead to blocking and reduces lifetime; starting sequence:;- press button on device once;- restart Tasmota with script activated (you have 5 minutes to do this);- after 30s data is retrieved and logged (including SYSLOG depending on Tasmota log config);- now every 45min a new request is done, updated in WebUI (and transferred by MQTT every TPER period); polling period needs to be less 60min to avoid sleep mode of device!if ((upsecs==1) or (upsecs%2700==0)) { print read meter =#readmeter}if upsecs==30 { ->sensor53 d1 print read meter (dump) =#readmeter}if upsecs==60 { ; disable dump ->sensor53 d0}>M 1+1,3,rE1,0,2400,WAERME,11,=so3,321,0478u32s@1,Zählernummer,,Zählernummer,01,0406u32s@1000,Energie,MWh,Energie,31,0413u32s@1000,Volumen,m³,Volumen,31,042bu32s@1,Leistung,W,Leistung,01,142bu32s@1,Max. Leistung,W,Max. Leistung,01,043bu32s@1000,Volumenstrom,m³/h,Volumenstrom,31,143bu32s@1000,Max. Volumenstrom,m³/h,Max. Volumenstrom,31,025buuUU@1,Vorlauftemperatur,°C,Vorlauftemperatur,01,025fuuUU@1,Rücklauftemperatur,°C,Rücklauftemperatur,01,0261ssSS@100,Temperaturdifferenz,°C,Temperaturdifferenz,21,0223uuUU@1,Betriebsdauer,Tage,Betriebsdauer,01,4406u32s@1000,Stichtag Energie,MWh,Letzter Stichtag Energie,31,4413u32s@1000,Stichtag Volumen,m³,Letzter Stichtag Volumen,3##readmeterprint wakeup start;set serial protocolsml(-1 1 "2400:8N1");send 0x55 for 2,2 seconds with 8N1 (53x), 2400 baud (wakeup sequence)for wkup 1 53 1sml(1 1 "55555555555555555555")nextprint wakeup endwkup=1print wait for the meterdelay(350);switch serial protocolsml(-1 1 "2400:8E1")print init MBus (1040004016); scan for device 00sml(1 1 "1040004016")delay(350)print request current data (107BFE7916)sml(1 1 "107BFE7916")print request current data finished#
Smart Meter Interface - Tasmota (2024)
Top Articles
Latest Posts
Article information

Author: Reed Wilderman

Last Updated:

Views: 6089

Rating: 4.1 / 5 (72 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Reed Wilderman

Birthday: 1992-06-14

Address: 998 Estell Village, Lake Oscarberg, SD 48713-6877

Phone: +21813267449721

Job: Technology Engineer

Hobby: Swimming, Do it yourself, Beekeeping, Lapidary, Cosplaying, Hiking, Graffiti

Introduction: My name is Reed Wilderman, I am a faithful, bright, lucky, adventurous, lively, rich, vast person who loves writing and wants to share my knowledge and understanding with you.